Design of broadband dual-band dual circularly polarized millimeter wave antenna for 5G mobile devices
-
摘要: 设计实现了一种宽带双频双圆极化的毫米波单馈天线,天线同时在n257(26.5~29.5 GHz)、n260(37.0~40.0 GHz)波段工作。与传统的圆极化天线相比,天线采用上下堆叠的不规则贴片实现了双频双圆极化,提高了信号收发隔离度;通过增加弯曲的寄生贴片,天线拓展了圆极化轴比带宽;金属边框上的矩形缝隙用来改善天线增益和带宽。测试结果表明,天线低频和高频的相对阻抗(<−10 dB)带宽分别达到20.4%和17.0%,相对轴比(<3 dB)带宽分别达到14.9%和11.4%。天线带宽覆盖n257、n260波段,可以用于5G移动设备与低轨卫星的通信。Abstract: A broadband dual-band dual circularly polarized millimeter wave single-fed antenna is designed. The antenna operates in n257(26.5−29.5 GHz) and n260(37.0−40.0 GHz) bands simultaneously. Compared with the traditional circularly polarized antenna, irregular patches stacked up and down are used to realize dual-band dual-circular polarization and improve the isolation of signal reception and transmission. By adding a curved parasitic patch, the antenna extends the axial ratio bandwidth. Rectangular gaps in the metal-frame are used to improve the antenna gain and expand the antenna bandwidth. The measurement results show that the relative impedance (<−10 dB) bandwidth at low frequency and high frequency are 20.4% and 17.0% respectively, and the relative axial ratio (<3 dB) bandwidth of dual-band dual-circular polarization are 14.9% and 11.4% respectively. The antenna bandwidth covers n257 and n260 bands, which can be used for communication between 5G mobile devices and LEO satellites.
-
表 1 天线单元尺寸参数
Table 1. Dimension parameters of antenna
(mm) H1 H2 H3 W0 Ly W1 W2 L1 0.813 1.3 0.508 1 9 2.1 1.7 1.7 Lx C3 C4 Lk1 Wf L2 Lf1 Lf2 9.6 0.9 2.3 4.6 0.5 1.1 5.6 2.6 C1 r1 r2 Lyout1 L0 Linx Liny Liny1 1.2 0.2 0.4 4.8 5.9 7.8 8.6 8.6 表 2 不同双圆极化天线结果比较
Table 2. Comparison of the proposed antenna with the other dual-circular-polarized antennas
antennas year operating frequency/GHz relative impedance BW/% relative 3 dB AR BW/% relative size/λ0 feed mode Ref [7] 2018 2.55/6.0 14.7/28.4 8.8/4.4 0.22×0.22 single feed Ref [8] 2019 2.4/5.2 20.4/12.6 16.6/5.7 0.30×0.32 single feed Ref [9] 2022 5.15/6.32 27.5 2.7/4.4 − single feed Ref [10] 2022 18.9/28.5 − 26.4/24.6 0.69×0.69 reflecting surface this work − 28/38 20.4 /17.0 14.9/11.4 0.89×0.84 single feed -
[1] Zhao Kun, Ying Zhinong, Zhang Shuai, et al. Antenna designs for mobile handsets with consideration of 3GPP requirements in FR2[C]//2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). 2021: 343-344. [2] Zhang Junkai, Garg N, Holm M, et al. Design of full duplex millimeter-wave integrated access and backhaul networks[J]. IEEE Wireless Communications, 2021, 28(1): 60-67. doi: 10.1109/MWC.001.2000199 [3] Chen Kuoming, Pan Yunhan, Lee T S. Low-complexity beam selection for hybrid precoded multi-user mmWave communications[C]//2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). 2018: 1-5. [4] Chang Yinchen, Hsu C C, Magray M I, et al. Wideband and low profile miniaturized magneto-electric dipole antenna for 5G mmWave applications[C]//2020 IEEE Asia-Pacific Microwave Conference (APMC). 2020: 697-699, [5] Zhao Yang, Liu Zhenyang, Fan Xing, et al. Design of a Ka broadband satellite communication antenna for low-earth-orbit constellation[C]//2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE). 2018: 1-4. [6] Chen Shanzhi, Sun Shaohui, Kang Shaoli. System integration of terrestrial mobile communication and satellite communication —the trends, challenges and key technologies in B5G and 6G[J]. China Communications, 2020, 17(12): 156-171. doi: 10.23919/JCC.2020.12.011 [7] Ni Chao, Wu Weijun, Liu Qifeng, et al. A novel dual-band dual-sense circularly polarized slot antenna design[C]//2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE). 2018: 1-3. [8] Kumar P, Dwari S, Saini R K, et al. Dual-band dual-sense polarization reconfigurable circularly polarized antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(1): 64-68. doi: 10.1109/LAWP.2018.2880799 [9] Zeng Jianping, Guan Fang, Lin Fenghan. Control of characteristic mode excitation for wideband and dual-band circularly polarized U-slot patch antennas[C]//2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI). 2022: 229-230. [10] Farias R L, Peixeiro C, Heckler M V T. Single-layer dual-band dual-circularly polarized reflectarray for space communication[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(7): 5989-5994. doi: 10.1109/TAP.2022.3161552 [11] Xu Rui, Li J Y, Wei D J, et al. A very simple dual-band dual-sense circularly polarized square slot antenna[C]//2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. 2018: 123-124. [12] Huang Huanchu, Wang Yijin, Jian Xianjing. Novel integrated design of dual-band dual-polarization mm-wave antennas in non-mm-wave antennas (AiA) for a 5G phone with a metal frame[C]//2019 International Workshop on Antenna Technology (iWAT). 2019: 125-128. [13] Yu Bin, Yang Kang, Sim C Y D, et al. A novel 28 GHz beam steering array for 5G mobile device with metallic casing application[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(1): 462-466. doi: 10.1109/TAP.2017.2772084 [14] Al Abbas E, Ikram M, Mobashsher A T, et al. MIMO antenna system for multi-band millimeter-wave 5G and wideband 4G mobile communications[J]. IEEE Access, 2019, 7: 181916-181923. doi: 10.1109/ACCESS.2019.2958897 [15] Ikram M, Al Abbas E, Nguyen-Trong N, et al. Integrated frequency-reconfigurable slot antenna and connected slot antenna array for 4G and 5G mobile handsets[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(12): 7225-7233. doi: 10.1109/TAP.2019.2930119 [16] Ding Yanran, Cheng Yujian. A tri-band shared-aperture antenna for (2.4, 5.2) GHz Wi-Fi application with MIMO function and 60 GHz Wi-Gig application with beam-scanning function[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 1973-1981. doi: 10.1109/TAP.2019.2948571 [17] Biswal S P, Sharma S K, Das S. Collocated microstrip slot MIMO antennas for cellular bands along with 5G phased array antenna for user equipments (UEs)[J]. IEEE Access, 2020, 8: 209138-209152. doi: 10.1109/ACCESS.2020.3038328 [18] Zada M, Shah I A, Yoo H. Integration of sub-6-GHz and mm-wave bands with a large frequency ratio for future 5G MIMO applications[J]. IEEE Access, 2021, 9: 11241-11251. doi: 10.1109/ACCESS.2021.3051066 -