留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

120 keV正离子源加速器绝缘支撑系统设计

邓文 谢亚红 顾玉明 江云飞 刘龙斌 王昉 胡纯栋

邓文, 谢亚红, 顾玉明, 等. 120 keV正离子源加速器绝缘支撑系统设计[J]. 强激光与粒子束, 2025, 37: 044003. doi: 10.11884/HPLPB202537.240279
引用本文: 邓文, 谢亚红, 顾玉明, 等. 120 keV正离子源加速器绝缘支撑系统设计[J]. 强激光与粒子束, 2025, 37: 044003. doi: 10.11884/HPLPB202537.240279
Deng Wen, Xie Yahong, Gu Yuming, et al. Design of insulation support system for 120 keV positive ion source accelerator[J]. High Power Laser and Particle Beams, 2025, 37: 044003. doi: 10.11884/HPLPB202537.240279
Citation: Deng Wen, Xie Yahong, Gu Yuming, et al. Design of insulation support system for 120 keV positive ion source accelerator[J]. High Power Laser and Particle Beams, 2025, 37: 044003. doi: 10.11884/HPLPB202537.240279

120 keV正离子源加速器绝缘支撑系统设计

doi: 10.11884/HPLPB202537.240279
基金项目: 国家自然科学基金项目(11975261)
详细信息
    作者简介:

    邓 文,wdeng@mail.ustc.edu.cn

    通讯作者:

    谢亚红,xieyh@ipp.ac.cn

  • 中图分类号: TL62+9.1

Design of insulation support system for 120 keV positive ion source accelerator

  • 摘要: 针对120 keV正离子源,设计了加速器的绝缘支撑系统,确定了绝缘体与支撑法兰的连接方式及相关参数,并通过有限元分析的方法,针对电场集中和连接支撑的问题,开展了绝缘支撑系统的优化设计。分别对绝缘体和电极进行静电模拟,确定了绝缘体的材料及结构参数,研究了加速器的绝缘性能。研究表明各绝缘体周围最大电场值低于4 kV/mm,电极间最大电场值约为14 kV/mm,满足120 keV正离子源加速器耐压要求。其次考虑离子源的垂直安装,在离子源重力作用下EG支撑法兰和绝缘体的连接螺栓要承受很大的正应力和剪应力,开展了加速器的机械性能研究。经过力学分析,螺栓最大正应力为26.336 MPa,剪切力为1.292 MPa。经过模拟分析,螺栓最大正应力为25.867 MPa,与理论解相差1.78%,小于材料的抗拉强度;最大剪切力为1.295 MPa,与理论解相差0.23%,小于材料的抗剪强度。研究结果表明120 keV正离子源加速器机械性能满足设计要求。
  • 图  1  120 keV正离子源加速器剖面图

    Figure  1.  Schematic diagram of 120 keV positive ion source accelerator

    图  2  SG-EG法兰绝缘体

    Figure  2.  The SG-EG insulator

    图  3  PG-SG绝缘体电场分布图

    Figure  3.  Distribution diagram of electric fields around PG-SG insulator

    图  4  绝缘体表面最大电场随绝缘体高度变化折线图

    Figure  4.  Plot of surface maximum electric fields as a function of the height of the insulator

    图  5  PG-SG电极间电场分布图

    Figure  5.  Electric field distribution between PG-SG

    图  6  三层电极倒角设计值

    Figure  6.  Chamfer design values for three grids

    图  7  中性束注入系统中离子源受力图

    Figure  7.  Force diagram of the ion source in the neutral beam injection system

    图  8  EG支撑法兰和绝缘体之间螺栓间距图

    Figure  8.  Bolt spacing between EG support flange and insulator

    图  9  有限元模型

    Figure  9.  Finite element model

    图  10  整体结构变形云图

    Figure  10.  Cloud chart of overall structure deformation

    图  11  螺栓应力云图

    Figure  11.  Cloud chart of bolt stress

    表  1  1、3、5号位倒角与电场关系表

    Table  1.   Relationship between chamfers and electric fields at positions 1, 3 and 5

    chamfer/mmposition 1/(kV·mm−1)position 3/(kV·mm−1)chamfer/mmposition 5/(kV·mm−1)
    0.416.914.5216.0
    0.615.513.3314.0
    0.714.312.7412.8
    0.816.412.4512.0
    下载: 导出CSV

    表  2  材料属性表

    Table  2.   Material properties

    material density/(kg·m−3) tensile strength/MPa shear strength/MPa
    304 stainless steel 7930 520 460
    PEEK 1320 98 53
    下载: 导出CSV

    表  3  螺栓轴向力及剪切力汇总表

    Table  3.   Summary of axial and shear forces on bolts

    bolt numberaxial force/Nshear force/Nbolt numberaxial force/Nshear force/N
    1−11.21499.96319130.86097.976
    2−8.46698.36520128.76095.891
    3−6.44496.68221126.07094.146
    4−6.56096.65622126.28094.158
    5−8.45398.32423128.98095.915
    6−11.17399.94824130.93097.998
    7−7.288101.4725106.110100.29
    8−4.003101.622674.424100.65
    9−1.080101.692748.888100.91
    100.690101.692830.771101.17
    113.316101.692918.179101.39
    126.334101.493010.716101.42
    1310.686101.40316.257101.49
    1418.150101.39323.363101.69
    1530.780101.16330.675101.69
    1648.889100.9234−1.105101.69
    1774.411100.6535−4.019101.62
    18105.870100.2536−7.346101.47
    下载: 导出CSV
  • [1] Xie Yahong, Hu Chundong, Liu Sheng, et al. R&D progress of high power ion source on EAST-NBI[J]. Plasma Science and Technology, 2018, 20: 014023. doi: 10.1088/2058-6272/aa8c6c
    [2] 曹建勇, 魏会领, 刘鹤, 等. HL-2M装置中性束注入加热系统研制进展[J]. 强激光与粒子束, 2018, 30:106001 doi: 10.11884/HPLPB201830.180051

    Cao Jianyong, Wei Huiling, Liu He, et al. Latest progress of development of the neutral beam injection heating system on HL-2M Tokamak[J]. High Power Laser and Particle Beams, 2018, 30: 106001 doi: 10.11884/HPLPB201830.180051
    [3] Ikeda Y, Hanada M, Kamada M, et al. Recent R&D activities of negative-ion-based ion source for JT-60SA[J]. IEEE Transactions on Plasma Science, 2008, 36(4): 1519-1529. doi: 10.1109/TPS.2008.927382
    [4] Tanaka Y, Hanada M, Kojima A, et al. Improvement of voltage holding capability in the 500 keV negative ion source for JT-60SA[J]. Review of Scientific Instruments, 2010, 81: 02A719. doi: 10.1063/1.3279399
    [5] Wei Jianglong, Xie Yahong, Liu Sheng, et al. Key issues for the filament-arc ion source of EAST neutral beam injector toward high-power and long-pulse operation[J]. Plasma Physics and Controlled Fusion, 2020, 62: 025004. doi: 10.1088/1361-6587/ab5293
    [6] Muvvala V N, Joshi J, Shah S, et al. Electro-mechanical design and experimental validation of post insulators for beam source for ITER diagnostic neutral beam[C]//Proceedings of the 26th IAEA Fusion Energy Conference-IAEA CN-234. 2016: 4-12.
    [7] Gu Yuming, Xie Yahong, Wei Jianglong, et al. The engineering design of quarter size negative beam source for the comprehensive research facility for fusion technology[J]. Fusion Engineering and Design, 2021, 171: 112600. doi: 10.1016/j.fusengdes.2021.112600
    [8] Xie Yahong, Hu Chundong, Liu Sheng, et al. Long pulse operation of neutral beam injector on EAST tokamak[J]. Fusion Engineering and Design, 2023, 193: 113744. doi: 10.1016/j.fusengdes.2023.113744
    [9] Kuriyama M, Akino N, Ebisawa N, et al. Operation and development on the positive-ion based neutral beam injection system for JT-60 and JT-60U[J]. Fusion Science and Technology, 2002, 42(2/3): 424-434.
    [10] 张鸿淇, 李志恒, 马少翔, 等. 中性束注入系统加速极电源高压部件设计[J]. 强激光与粒子束, 2024, 36:025011 doi: 10.11884/HPLPB202436.230159

    Zhang Hongqi, Li Zhiheng, Ma Shaoxiang, et al. Design of high-voltage components for acceleration grid power supply of neutral beam injection system[J]. High Power Laser and Particle Beams, 2024, 36: 025011 doi: 10.11884/HPLPB202436.230159
    [11] 杨肖, 毛本将, 何小海. 直流高压加速管轴向绝缘的优化设计[J]. 强激光与粒子束, 2005, 17(10):1595-1600

    Yang Xiao, Mao Benjiang, He Xiaohai. Optimization design of axial dielectric of DC high-voltage accelerating tube[J]. High Power Laser and Particle Beams, 2005, 17(10): 1595-1600
    [12] Agostinetti P, Aprile D, Antoni V, et al. Detailed design optimization of the MITICA negative ion accelerator in view of the ITER NBI[J]. Nuclear Fusion, 2016, 56: 016015. doi: 10.1088/0029-5515/56/1/016015
    [13] Xie Yahong, Hu Chundong, Zhao Hongwei. Analysis of ion beam optics of tetrode accelerator for neutral beam injector on the experimental advanced superconducting Tokamak[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 791: 22-26.
    [14] Crowley B, Rauch J, Scoville J T. Modeling and experimental studies of the DIII-D neutral beam system[J]. Fusion Engineering and Design, 2015, 96/97: 443-446. doi: 10.1016/j.fusengdes.2015.02.028
    [15] Chen Yuqian, Liu Longbin, Xie Yahong, et al. Beam optics analysis for the 120-keV multiaperture accelerator of neutral beam injector[J]. Fusion Science and Technology, 2025, 81(3): 269-278. doi: 10.1080/15361055.2024.2384669
    [16] 董刚, 李建功, 潘凤章. 机械设计[M]. 3版. 北京: 机械工业出版社, 1999

    Dong Gang, Li Jiangong, Pan Fengzhang. Mechanical design[M]. 3rd ed. Beijing: China Machine Press, 1999
    [17] 闻邦椿. 机械设计手册 第6版 第2卷[M]. 北京: 机械工业出版社, 2020

    Wen Bangchun. Mechanical design manual (sixth edition of volume 2)[M]. Beijing: China Machine Press, 2020
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  42
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-26
  • 修回日期:  2025-01-07
  • 录用日期:  2025-01-26
  • 网络出版日期:  2025-04-11
  • 刊出日期:  2025-04-15

目录

    /

    返回文章
    返回