留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于电子束辐照立式石墨烯的电子枪设计

张晓宁 何佳龙 赵伟 秦臻 石金水

张晓宁, 何佳龙, 赵伟, 等. 用于电子束辐照立式石墨烯的电子枪设计[J]. 强激光与粒子束, 2025, 37: 045005. doi: 10.11884/HPLPB202537.240284
引用本文: 张晓宁, 何佳龙, 赵伟, 等. 用于电子束辐照立式石墨烯的电子枪设计[J]. 强激光与粒子束, 2025, 37: 045005. doi: 10.11884/HPLPB202537.240284
Zhang Xiaoning, He Jialong, Zhao Wei, et al. Design of electron gun for electron beam irradiation of vertical graphene[J]. High Power Laser and Particle Beams, 2025, 37: 045005. doi: 10.11884/HPLPB202537.240284
Citation: Zhang Xiaoning, He Jialong, Zhao Wei, et al. Design of electron gun for electron beam irradiation of vertical graphene[J]. High Power Laser and Particle Beams, 2025, 37: 045005. doi: 10.11884/HPLPB202537.240284

用于电子束辐照立式石墨烯的电子枪设计

doi: 10.11884/HPLPB202537.240284
基金项目: 四川省医学会肿瘤专项科研项目(2024HR19);四川省卫生健康委员会科技项目(24QNMP037);国家自然科学基金项目(12075224)
详细信息
    作者简介:

    张晓宁,15681192266@163.com

    通讯作者:

    何佳龙,hejl2003@126.com

  • 中图分类号: TM89

Design of electron gun for electron beam irradiation of vertical graphene

  • 摘要: 多项研究表明,材料表面的立式石墨烯涂层能够显著降低二次电子产额,且二次电子产额最大值所对应的入射电子能量通常在百电子伏特。在电子束辐照的实际工况下,立式石墨烯的微观结构会经历复杂的动态演变过程,这些微观结构变化的方式、特点以及由其导致的二次电子发射特性的变化程度与机理可能各不相同。为系统研究电子束辐照参数对立式石墨烯微观结构演变及其二次电子发射特性的影响规律,本研究采用理论仿真与实验验证相结合的研究方法,自主设计并研制了一套专门用于立式石墨烯辐照研究的电子束辐照系统。
  • 图  1  电子枪结构示意图

    Figure  1.  Schematic diagram of the electron gun structure

    图  2  电子枪各部分示意图

    Figure  2.  Schematic diagram of the parts of the electron gun

    图  3  样品台示意图

    Figure  3.  Schematic diagram of the sample stage

    图  4  模拟网格划分示意图

    Figure  4.  Schematic diagram of simulation meshing

    图  5  聚焦极高度为4 mm、5 mm、6 mm、7 mm的束斑结果

    Figure  5.  Beam spot results for focusing pole heights of 4 mm, 5 mm, 6 mm, and 7 mm

    图  6  电子束轨迹和电子枪的等势面

    Figure  6.  Electron beam trajectory and isopotential surface of the electron gun

    图  7  镀铝膜闪烁体

    Figure  7.  Aluminized scintillator

    图  8  束斑的整体尺寸

    Figure  8.  Overall dimensions of the beam spot

    图  9  束斑的均匀性

    Figure  9.  Uniformity of beam spot

  • [1] Cimino R, Collins I R, Furman M A, et al. Can low-energy electrons affect high-energy physics accelerators?[J]. Physical Review Letters, 2004, 93: 014801. doi: 10.1103/PhysRevLett.93.014801
    [2] 何佳龙, 陈思富, 张篁, 等. 神龙二号加速器绝缘环真空沿面闪络[J]. 强激光与粒子束, 2016, 28:095101 doi: 10.11884/HPLPB201628.150950

    He Jialong, Chen Sifu, Zhang Huang, et al. Vacuum flashover of Dragon-Ⅱ accelerator insulator ring[J]. High Power Laser and Particle Beams, 2016, 28: 095101 doi: 10.11884/HPLPB201628.150950
    [3] Ecoffet R. Overview of In-orbit radiation induced spacecraft anomalies[J]. IEEE Transactions on Nuclear Science, 2013, 60(3): 1791-1815.
    [4] 何友辉, 陈洪斌, 李飞, 等. 固体绝缘子的真空沿面闪络研究[J]. 强激光与粒子束, 2023, 35:035004 doi: 10.11884/HPLPB202335.220214

    He Youhui, Chen Hongbin, Li Fei, et al. Review of surface flashover and surface charge behavior of vacuum insulators[J]. High Power Laser and Particle Beams, 2023, 35: 035004 doi: 10.11884/HPLPB202335.220214
    [5] Montero I, Aguilera L, Dávila M E, et al. Secondary electron emission under electron bombardment from graphene nanoplatelets[J]. Applied Surface Science, 2014, 291: 74-77.
    [6] He Jialong, Yang Jie, Peng Yufei, et al. Measurement of yield and spectrum of secondary electron emission and their characteristics under modification of conductive materials[J]. Review of Scientific Instruments, 2019, 90: 063304.
    [7] Lee S W, Baik Y J, Kang C J, et al. Suppression of secondary electrons from diamond by whisker formation[J]. Applied Surface Science, 2003, 215(1/4): 265-268.
    [8] Patino M, Raitses Y, Wirz R. Secondary electron emission from plasma-generated nanostructured tungsten fuzz[J]. Applied Physics Letters, 2016, 109: 201602.
    [9] Zhou Yangbo, Jadwiszczak J, Keane D, et al. Programmable graphene doping via electron beam irradiation[J]. Nanoscale, 2017, 9(25): 8657-8664.
    [10] Teweldebrhan D, Balandin A A. Modification of graphene properties due to electron-beam irradiation[J]. Applied Physics Letters, 2009, 94: 013101. doi: 10.1063/1.3062851
    [11] Childres I, Jauregui L A, Foxe M, et al. Effect of electron-beam irradiation on graphene field effect devices[J]. Applied Physics Letters, 2010, 97: 173109. doi: 10.1063/1.3502610
    [12] Hossain Z, Rumyantsev S, Shur M S, et al. Reduction of 1/f noise in graphene after electron-beam irradiation[J]. Applied Physics Letters, 2013, 102: 153512. doi: 10.1063/1.4802759
    [13] Liu Guanxiong, Teweldebrhan D, Balandin A A. Tuning of graphene properties via controlled exposure to electron beams[J]. IEEE Transactions on Nanotechnology, 2011, 10(4): 865-870. doi: 10.1109/TNANO.2010.2087391
    [14] Kim H, Park W, Nam K, et al. Effects of electron beam irradiation on the friction and work function of the wrinkled graphene[J]. Current Applied Physics, 2019, 19(11): 1172-1176. doi: 10.1016/j.cap.2019.07.013
    [15] He Y H, Wang L, Chen X L, et al. Modifying electronic transport properties of graphene by electron beam irradiation[J]. Applied Physics Letters, 2011, 99: 033109. doi: 10.1063/1.3615294
    [16] Thiele C, Felten A, Echtermeyer T J, et al. Electron-beam-induced direct etching of graphene[J]. Carbon, 2013, 64: 84-91. doi: 10.1016/j.carbon.2013.07.038
  • 加载中
图(9)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  31
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-27
  • 修回日期:  2025-03-26
  • 录用日期:  2025-03-26
  • 网络出版日期:  2025-04-02
  • 刊出日期:  2025-04-15

目录

    /

    返回文章
    返回