[1] |
Cimino R, Collins I R, Furman M A, et al. Can low-energy electrons affect high-energy physics accelerators?[J]. Physical Review Letters, 2004, 93: 014801. doi: 10.1103/PhysRevLett.93.014801
|
[2] |
何佳龙, 陈思富, 张篁, 等. 神龙二号加速器绝缘环真空沿面闪络[J]. 强激光与粒子束, 2016, 28:095101 doi: 10.11884/HPLPB201628.150950He Jialong, Chen Sifu, Zhang Huang, et al. Vacuum flashover of Dragon-Ⅱ accelerator insulator ring[J]. High Power Laser and Particle Beams, 2016, 28: 095101 doi: 10.11884/HPLPB201628.150950
|
[3] |
Ecoffet R. Overview of In-orbit radiation induced spacecraft anomalies[J]. IEEE Transactions on Nuclear Science, 2013, 60(3): 1791-1815.
|
[4] |
何友辉, 陈洪斌, 李飞, 等. 固体绝缘子的真空沿面闪络研究[J]. 强激光与粒子束, 2023, 35:035004 doi: 10.11884/HPLPB202335.220214He Youhui, Chen Hongbin, Li Fei, et al. Review of surface flashover and surface charge behavior of vacuum insulators[J]. High Power Laser and Particle Beams, 2023, 35: 035004 doi: 10.11884/HPLPB202335.220214
|
[5] |
Montero I, Aguilera L, Dávila M E, et al. Secondary electron emission under electron bombardment from graphene nanoplatelets[J]. Applied Surface Science, 2014, 291: 74-77.
|
[6] |
He Jialong, Yang Jie, Peng Yufei, et al. Measurement of yield and spectrum of secondary electron emission and their characteristics under modification of conductive materials[J]. Review of Scientific Instruments, 2019, 90: 063304.
|
[7] |
Lee S W, Baik Y J, Kang C J, et al. Suppression of secondary electrons from diamond by whisker formation[J]. Applied Surface Science, 2003, 215(1/4): 265-268.
|
[8] |
Patino M, Raitses Y, Wirz R. Secondary electron emission from plasma-generated nanostructured tungsten fuzz[J]. Applied Physics Letters, 2016, 109: 201602.
|
[9] |
Zhou Yangbo, Jadwiszczak J, Keane D, et al. Programmable graphene doping via electron beam irradiation[J]. Nanoscale, 2017, 9(25): 8657-8664.
|
[10] |
Teweldebrhan D, Balandin A A. Modification of graphene properties due to electron-beam irradiation[J]. Applied Physics Letters, 2009, 94: 013101. doi: 10.1063/1.3062851
|
[11] |
Childres I, Jauregui L A, Foxe M, et al. Effect of electron-beam irradiation on graphene field effect devices[J]. Applied Physics Letters, 2010, 97: 173109. doi: 10.1063/1.3502610
|
[12] |
Hossain Z, Rumyantsev S, Shur M S, et al. Reduction of 1/f noise in graphene after electron-beam irradiation[J]. Applied Physics Letters, 2013, 102: 153512. doi: 10.1063/1.4802759
|
[13] |
Liu Guanxiong, Teweldebrhan D, Balandin A A. Tuning of graphene properties via controlled exposure to electron beams[J]. IEEE Transactions on Nanotechnology, 2011, 10(4): 865-870. doi: 10.1109/TNANO.2010.2087391
|
[14] |
Kim H, Park W, Nam K, et al. Effects of electron beam irradiation on the friction and work function of the wrinkled graphene[J]. Current Applied Physics, 2019, 19(11): 1172-1176. doi: 10.1016/j.cap.2019.07.013
|
[15] |
He Y H, Wang L, Chen X L, et al. Modifying electronic transport properties of graphene by electron beam irradiation[J]. Applied Physics Letters, 2011, 99: 033109. doi: 10.1063/1.3615294
|
[16] |
Thiele C, Felten A, Echtermeyer T J, et al. Electron-beam-induced direct etching of graphene[J]. Carbon, 2013, 64: 84-91. doi: 10.1016/j.carbon.2013.07.038
|