留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

快堆多群截面处理程序MGGC2.0的验证与确认

马续波 马隆霄 马旭东 张腾 陈相

马续波, 马隆霄, 马旭东, 等. 快堆多群截面处理程序MGGC2.0的验证与确认[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240397
引用本文: 马续波, 马隆霄, 马旭东, 等. 快堆多群截面处理程序MGGC2.0的验证与确认[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240397
Ma Xubo, Ma Longxiao, Ma Xudong, et al. Verification and validation of the fast reactor multi-group cross section processing code MGGC2.0[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240397
Citation: Ma Xubo, Ma Longxiao, Ma Xudong, et al. Verification and validation of the fast reactor multi-group cross section processing code MGGC2.0[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240397

快堆多群截面处理程序MGGC2.0的验证与确认

doi: 10.11884/HPLPB202537.240397
基金项目: 国家自然科学基金项目(11875128)
详细信息
    作者简介:

    马续波,maxb@ncepu.edu.cn

  • 中图分类号: (TL329)

Verification and validation of the fast reactor multi-group cross section processing code MGGC2.0

  • 摘要: 基于多群截面的确定论计算方法一直都是反应堆工程设计的重要方法,多群截面精度直接影响着反应堆物理计算的精度。为了产生快堆高精度的截面数据,华北电力大学开发了高精度截面处理程序MGGC2.0,对该程序进行了基准验证和确认。基于ENDF/B-Ⅶ.1库计算无限大均匀混合介质UO2、MOX、U-TRU-Zr燃料,将MGGC2.0与MCNP产生的宏观截面对比验证,验证了程序产生多群截面的精度,超细群宏观多群总截面与MCNP的参考解的相对偏差基本在5%以内。然后对俄罗斯快堆实验BFS97-1进行了计算,提出了针对多种燃料排布形式的燃料少群截面均匀化方法,利用MGGC2.0的碰撞概率法计算了燃料的少群截面数据,利用DIF3D程序进行堆芯计算,同时还对比了不同截面均匀化方法的结果。研究结果表明:对于BFS97-1,如果直接采用临界搜索产生的截面,DIF3D计算的有效增殖因数(keff)结果与MCNP计算的keff的绝对偏差为2.541×10−2,通过改进燃料轴向不均匀计算方法,使得偏差降到了5.0×10−4以下。针对BFS97-1、BFS97-2、BFS97-5和BFS97-6的计算结果与MCNP结果的偏差都在3.0×10−3以内,验证了程序产生多群和少群截面具有较高精度,可以满足工程设计要求。
  • 图  1  UO2燃料宏观截面

    Figure  1.  Macroscopic cross section of UO2 fuel

    图  2  MOX燃料宏观截面

    Figure  2.  Macroscopic cross section of MOX fuel

    图  3  U-TRU-Zr 燃料宏观截面

    Figure  3.  Macroscopic cross section of U-TRU-Zr fuel

    图  4  BFS97-1装置径向排布

    Figure  4.  Radial arrangement of BFS97-1 assembly

    图  5  等效的一维圆柱模型

    Figure  5.  Equivalent 1-D cylinder model

    图  6  BFS燃料元件

    Figure  6.  BFS fuel elements

    图  7  燃料元件的一维均匀化方法

    Figure  7.  1-D homogenization method of fuel elements

    表  1  UO2燃料组件核子密度

    Table  1.   Nuclear density of UO2 fuel assembly

    fuel nuclide density/(10−30 cm−3) fuel nuclide density/(110−28 cm−3)
    16O 1.73649×10−2 Cr 1.38077×10−3
    235U 1.30237×10−3 Ni 1.20226×10−3
    238U 7.38009×10−3 Mo 1.11526×10−4
    Fe 5.54166×10−3 Na 1.10164×10−2
    下载: 导出CSV

    表  2  MOX燃料组件核子密度

    Table  2.   Nuclear density of MOX fuel assembly

    fuel nuclide density/(10−28 cm−3) fuel nuclide density/(10−28 cm−3)
    16O 1.42606×10−2 242Pu 4.84251×10−7
    235U 1.51479×10−5 Fe 5.54166×10−3
    238U 5.72980×10−3 Cr 1.38077×10−3
    239Pu 1.06137×10−3 Ni 1.20226×10−3
    240Pu 9.47823×10−5 Mo 1.11526×10−4
    241Pu 6.04937×10−6 Na 1.10164×10−2
    下载: 导出CSV

    表  3  U-TRU-Zr燃料组件核子密度

    Table  3.   Nuclear density of U-TRU-Zr fuel assembly

    fuel nuclide density/(10−28 cm−3) fuel nuclide density/10−28 cm−3
    234U 4.43391×10−7 242mAm 3.62657×10−6
    235U 1.18642×10−5 243Am 3.90663×10−5
    236U 9.70944×10−7 242Cm 2.19375×10−6
    238U 7.65004×10−3 243Cm 2.11852×10−7
    237Np 1.82075×10−5 244Cm 2.62236×10−5
    236Pu 1.93830×10−10 245Cm 6.78483×10−6
    238Pu 4.56105×10−5 246Cm 3.59912×10−6
    239Pu 8.60964×10−4 Zr 2.83927×10−3
    240Pu 5.16516×10−4 Fe 1.78888×10−2
    241Pu 7.55625×10−5 Cr 2.65991×10−3
    242Pu 1.14180×10−4 Ni 1.10296×10−4
    241Am 4.20849×10−5 Mo 4.87956×10−4
    下载: 导出CSV

    表  4  BFS97-1不同截面制作的结果对比

    Table  4.   Comparison of results obtained with different cross section for BFS97-1

    device
    name
    reference
    value/MCNP
    MGGC2.0/DIF3D absolute deviation
    direct critical search
    calculation
    1-D homogenization
    method
    direct critical search
    calculation
    1-D homogenization
    method
    BFS97-1 0.99573 0.97032 0.99566 −2.541×10−2 −7.0×10−5
    下载: 导出CSV

    表  5  MGGC2.0一维均匀化方法的计算结果

    Table  5.   Calculation results under 1-D homogenization method for MGGC2.0

    device name reference value/
    MCNP
    MGGC2.0/DIF3D
    1-D homogenization method
    absolute deviation
    BFS97-1 0.99573 0.99566 −7.0×10−5
    BFS97-2 1.00086 1.00060 −2.6×10−4
    BFS97-5 0.99667 0.99505 −1.62×10−3
    BFS97-6 0.99798 1.00093 2.95×10−3
    下载: 导出CSV
  • [1] Bouchard J B. Generation IV advanced nuclear energy systems[J]. Nuclear Plant Journal, 2008, 26(5): 42-45.
    [2] 黄自锋. 共振峰重构与快堆超精细能群截面制作方法研究[D]. 北京: 华北电力大学(北京), 2021

    Huang Zifeng. Research on reconstruction and Linearization of resonance cross section and fabrication method of ultrafine energy group cross section of fast reactor[D]. Beijing: North China Electric Power University (Beijing), 2021
    [3] 黄自锋, 马续波, 朱润泽, 等. 快堆多群数据库处理程序MGGC1.0的开发和验证[J]. 核动力工程, 2021, 42(3):6-13

    Huang Zifeng, Ma Xubo, Zhu Runze, et al. Development and verification of fast reactor multi-group cross section database processing code MGGC1.0[J]. Nuclear Power Engineering, 2021, 42(3): 6-13
    [4] Chadwick M B, Herman M, Obložinský P, et al. ENDF/B-VII. 1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data[J]. Nuclear Data Sheets, 2011, 112(12): 2887-2996. doi: 10.1016/j.nds.2011.11.002
    [5] 杜夏楠, 曹良志, 郑友琦. 基于点截面的快堆组件均匀化参数计算方法[J]. 强激光与粒子束, 2017, 29:016001 doi: 10.11884/HPLPB201729.160176

    Du Xianan, Cao Liangzhi, Zheng Youqi. Method of generating homogenized fast reactor assembly constants based on point-wise cross section[J]. High Power Laser and Particle Beams, 2017, 29: 016001 doi: 10.11884/HPLPB201729.160176
    [6] Trkov A, Brown D A. ENDF-6 formats manual: data formats and procedures for the evaluated nuclear data files[R]. Upton: Brookhaven National Laboratory, 2018.
    [7] 张斌. 基于连续点截面的快堆高精度多群截面计算方法研究[D]. 北京: 华北电力大学(北京), 2023

    Zhang Bin. Research on the calculation method of high-precision multi-group cross-sections for fast reactors based on continuous point-wise cross-sections[D]. Beijing: North China Electric Power University (Beijing), 2023
    [8] Kochetkov A, Semenov M, Rozhikhin Y. BFS-97, -99, -101 assemblies: critical experiments with heterogeneous compositions of plutonium, depleted uranium dioxide, and polyethylene. NEA/NSC/DOC/(95)03/Ⅵ.
    [9] Semenov M, Rozhikhin Y. BFS-97, -99 assemblies, part II: critical experiments with heterogeneous compositions of plutonium, depleted-uranium dioxide, and polyethylene. NEA/NSC/DOC/(95)03/Ⅵ.
    [10] Lawrence R D. The DIF3D nodal neutronics option for two- and three-dimensional diffusion-theory calculations in hexagonal geometry[R]. Argonne: Argonne National Laboratory, 1983.
    [11] Macfarlane R, Muir D W, Boicourt R M, et al. The NJOY nuclear data processing system, version 2016[R]. LA-UR-17-20093, 2016.
    [12] Hu Kui, Ma Xubo, Zhang Teng, et al. MGGC2.0: a preprocessing code for the multi-group cross section of the fast reactor with ultrafine group library[J]. Nuclear Engineering and Technology, 2023, 55(8): 2785-2796. doi: 10.1016/j.net.2023.05.005
    [13] Kim Y I, Lee Y B, Lee C B, et al. Design concept of advanced sodium-cooled fast reactor and related R&D in Korea[J]. Science and Technology of Nuclear Installations, 2013, 2013: 290362.
    [14] Rimpault G. Algorithmic features of the ECCO cell code for treating heterogeneous fast reactor subassemblies[C]//Proceedings of the International Conference on Mathematics and Computations, Reactor Physics, and Environmental Analyses. 1995.
    [15] Brown D A, Chadwick M B, Capote R, et al. ENDF/B-VIII. 0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data[J]. Nuclear Data Sheets, 2018, 148: 1-142. doi: 10.1016/j.nds.2018.02.001
    [16] 杜夏楠, 曹良志, 郑友琦. SARAX-FXS程序针对非均匀快堆堆芯计算中的改进及应用[J]. 原子能科学技术, 2017, 51(12):2271-2277 doi: 10.7538/yzk.2017.51.12.2271

    Du Xianan, Cao Liangzhi, Zheng Youqi. Improvement and application of SARAX-FXS code in calculation of heterogeneous fast reactor core[J]. Atomic Energy Science and Technology, 2017, 51(12): 2271-2277 doi: 10.7538/yzk.2017.51.12.2271
    [17] Yun S, Lee M J, Kim S J. Validation of the MC2-3/TWODANT/DIF3D code system for control rod worth via BFS-75-1 and BFS-109-2A reactor physics experiments[J]. Annals of Nuclear Energy, 2018, 111: 59-72. doi: 10.1016/j.anucene.2017.08.064
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  19
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-15
  • 修回日期:  2025-04-15
  • 录用日期:  2025-04-07
  • 网络出版日期:  2025-05-20

目录

    /

    返回文章
    返回