留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强流质子加速器束流剖面测量探测器设计

刘孟宇 孙继磊 徐智虹 杨涛 聂小军 黄蔚玲 康玲 刘华昌 杨仁俊

刘孟宇, 孙继磊, 徐智虹, 等. 强流质子加速器束流剖面测量探测器设计[J]. 强激光与粒子束, 2025, 37: 044007. doi: 10.11884/HPLPB202537.240419
引用本文: 刘孟宇, 孙继磊, 徐智虹, 等. 强流质子加速器束流剖面测量探测器设计[J]. 强激光与粒子束, 2025, 37: 044007. doi: 10.11884/HPLPB202537.240419
Liu Mengyu, Sun Jilei, Xu Zhihong, et al. Design of detector for measuring beam profile of high-intensity proton accelerator[J]. High Power Laser and Particle Beams, 2025, 37: 044007. doi: 10.11884/HPLPB202537.240419
Citation: Liu Mengyu, Sun Jilei, Xu Zhihong, et al. Design of detector for measuring beam profile of high-intensity proton accelerator[J]. High Power Laser and Particle Beams, 2025, 37: 044007. doi: 10.11884/HPLPB202537.240419

强流质子加速器束流剖面测量探测器设计

doi: 10.11884/HPLPB202537.240419
基金项目: 国家自然科学基金项目(12275294);广东省自然科学基金项目(2021A1515010269)
详细信息
    作者简介:

    刘孟宇,liumy@ihep.ac.cn

    通讯作者:

    黄蔚玲,huangwei@ihep.ac.cn

    杨仁俊,yangrenjun@ihep.ac.cn

  • 中图分类号: TL506

Design of detector for measuring beam profile of high-intensity proton accelerator

  • 摘要: 束流的横向剖面分布是强流质子加速器的关键性能指标之一。中国散裂中子源直线加速器新安装一台残余气体电离型束流剖面探测器(IPM),用于关键位置束流横向剖面等参数的非拦截式实时测量。介绍了该剖面探测器的选型、结构设计思路及束流实验结果。探测器采用紧凑型结构,提供了一种较小空间占用下较高分辨率的设计思路。紧凑型IPM在低压板通孔处采用匀场栅网的结构形式改善电场均匀度,减小横向电场分量及剖面测量畸变。探测器带束实验测试了其在轨道和剖面等参数测量任务中引导电场、MCP、相机等关键影响因素的性能,并与探测器位置附近的BPM所测得的束流轨道进行比对和校准。该IPM的横向剖面测量值与理论计算值对比最终误差小于8.3%,满足束流剖面的测量需求。
  • 图  1  IPM工作原理示意图

    Figure  1.  Principle of Ionization profile monitor (IPM)

    图  2  CSNS布局及直线加速器IPM位置[10]

    Figure  2.  CSNS layout and linac IPM location[10]

    图  3  直线加速器IPM总体外观及电场框架

    Figure  3.  Overall appearance and field cage framework of IPM

    图  4  IPM LabVIEW采集程序界面

    Figure  4.  IPM LabVIEW acquisition program interface

    图  5  IPM下游束流损失与IPM加压关系

    Figure  5.  Relationship between IPM downstream beam loss and IPM

    图  6  2~8 kV引导场电势下MCP压差、束流流强与图像像素积分值(收集光子数)关系

    Figure  6.  Relationship between MCP pressure, beam current intensity and image pixel integral value (number of collected photons)

    图  7  束流变轨道扫描及MCP一维寿命标定

    Figure  7.  Local orbit bumps and one-dimensional lifetime calibration

    图  8  MCP二维MCP寿命标定结果

    Figure  8.  MCP two-dimensional life calibration result

    图  10  安装电磁屏蔽后IPM获取的图像及修复结果

    Figure  10.  Image obtained by the IPM after installing the electromagnetic shielding and the repair result

    图  9  DIP与PDE修复性能对比

    Figure  9.  Comparison of repair performance among PDE and DIP

    表  1  CSNS直线加速器IPM处束流参数

    Table  1.   Beam parameters at the IPM of CSNS linac

    energy/MeV repetition rate/Hz vacuum/Pa gas type beam width/µs N
    80 25 10−6~10−7 H2, He, etc. 20~415 1.56×1013
    下载: 导出CSV
  • [1] Wang Sheng, Fang Shouxian, Fu Shinian, et al. Introduction to the overall physics design of CSNS accelerators[J]. Chinese Physics C, 2009, 33(s2): 1-3.
    [2] 陈和生, 马力, 陈元柏, 等. 散裂中子源初步设计报告[R]. 北京: 中国科学院, 2016

    Chen Hesheng, Ma Li, Chen Yuanbai, et al. Preliminary design report for the China Spallation Neutron Source[R]. Beijing: Chinese Academy of Sciences, 2016
    [3] 孙纪磊, 阮玉芳, 肖帅, 等. 强流质子加速器束流剖面分布及束晕测量系统设计[J]. 强激光与粒子束, 2011, 23(1):190-194 doi: 10.3788/HPLPB20112301.0190

    Sun Jilei, Ruan Yufang, Xiao Shuai, et al. Design of beam profile and halo measurement system for high-intensity RFQ accelerator[J]. High Power Laser and Particle Beams, 2011, 23(1): 190-194 doi: 10.3788/HPLPB20112301.0190
    [4] Hornstra Jr F, DeLuca W H. Nondestructive beam profile detection systems for the zero gradient synchrotron[R]. Du Page County: Argonne National Lab, 1968: 374-377.
    [5] DeLuca W H. Beam detection using residual gas ionization[J]. IEEE Transactions on Nuclear science, 1969, 16(3): 813-822.
    [6] Hardek T, Kells W, Lai H. Very low intensity storage-ring profile monitor[J]. IEEE Transactions on Nuclear Science, 1981, 28(3): 2219-2221.
    [7] Weisberg H, Gill E, Ingrassia P, et al. An ionization profile monitor for the Brookhaven AGS[J]. IEEE Transactions on Nuclear Science, 1983, 30(4): 2179-2181.
    [8] Sandberg H, Bertsche W, Bodart D, et al. Measuring the beam profile by counting ionization electrons[C]//Proceedings of the 8th International Beam Instrumentation Conference. 2019: 257-260.
    [9] Bethe H. Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie[J]. Annalen der Physik, 1930, 397(3): 325-400.
    [10] 王生, 傅世年, 屈化民, 等. 中国散裂中子源强流质子加速器设计、研制及调试运行[J]. 原子能科学技术, 2022, 56(9):1747-1759 doi: 10.7538/yzk.2022.youxian.0591

    Wang Sheng, Fu Shinian, Qu Huamin, et al. Design, development and commissioning for high-intensity proton accelerator of China Spallation Neutron Source[J]. Atomic Energy Science and Technology, 2022, 56(9): 1747-1759 doi: 10.7538/yzk.2022.youxian.0591
    [11] Yang Tao, Tian Jianmin, Zeng Lei, et al. Experimental studies and Monte Carlo simulations for beam loss monitors[J]. Physical Review-Accelerators and Beams, 2021, 24: 032804.
    [12] Lempitsky V, Vedaldi A, Ulyanov D. Deep image prior[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018: 9446-9454.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  55
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-10
  • 修回日期:  2025-03-17
  • 录用日期:  2025-03-17
  • 网络出版日期:  2025-03-27
  • 刊出日期:  2025-04-15

目录

    /

    返回文章
    返回