Development of nanosecond pulsed power supply for large-area dielectric barrier discharges
-
摘要: 介质阻挡放电(DBD)技术作为一种新兴的空气消毒手段,因其能够在常温下产生低温等离子体,并有效杀灭空气中的细菌和病毒,受到了广泛关注。为满足DBD技术的应用需求,完成了DBD放电脉冲电源的研制。该电源采用倍压电路对前级电容进行充电,不仅保证了IGBT(绝缘栅双极型晶体管)的零电流关断,还防止了后级短路可能对固态开关造成的击穿风险。通过将脉冲变压器的电压提升作用与磁开关的脉冲陡化作用相结合,实现了负载电压的快前沿、高峰值输出。这一设计不仅减轻了前级系统的负担,还显著提高了系统的寿命和重复工作频率。实验结果表明,该电源的负载输出电压峰值可达27 kV,脉冲宽度为650 ns,脉冲前沿时间为60 ns,且重复频率在0~500 Hz范围内连续可调。Abstract: Dielectric barrier discharge (DBD) technology, an emerging method for air disinfection, has drawn considerable interest due to its capacity to generate low-temperature plasma at ambient temperatures, thereby effectively neutralizing airborne bacteria and viruses. To cater to the practical requirements of DBD technology, the development of a DBD discharge pulse power supply has been successfully completed. This power supply incorporates a voltage doubling circuit to charge the front-stage capacitor, not only ensuring the zero-current shutdown of the IGBT (insulated gate bipolar transistor) but also mitigating the risk of breakdown potentially caused by short circuits in the back-stage to the solid-state switch. By leveraging the voltage amplification of a pulse transformer in conjunction with the pulse sharpening effect of a magnetic switch, the system achieves a rapid leading edge and a high peak load output voltage. This design not only alleviates the load on the preamplifier system but also substantially enhances the system’s lifespan and operational frequency. Experimental data reveal that the peak load output voltage of this power supply can reach 27 kV, with a pulse width of 650 ns, a pulse rise time of 60 ns, and a continuously adjustable repetition frequency ranging from 0 to 500 Hz
-
Key words:
- air disinfection technology /
- plasma /
- dielectric barrier discharge /
- pulsed power supply
-
表 1 电源主要器件参数
Table 1. Parameters of the main power supply devices
V/V L1/μH C1, C2, C 3/μF C4, C5/nF CL/nF RL/Ω N/turns MS1 MS2 MS3 600 100 0.3 0.5 0.3 16 57 8 8 -
[1] 李和平, 于达仁, 孙文廷, 等. 大气压放电等离子体研究进展综述[J]. 高电压技术, 2016, 42(12):3697-3727Li Heping, Yu Daren, Sun Wenting, et al. State-of-the-art of atmospheric discharge plasma[J]. High Voltage Engineering, 2016, 42(12): 3697-3727 [2] Alonso J M, Valdés M, Calleja A J, et al. High frequency testing and modeling of silent discharge ozone generators[J]. Ozone: Science & Engineering, 2003, 25(5): 363-376. [3] Zhang Liyang, Guo Yuntao, Chang Xuanyu, et al. In-duct grating-like dielectric barrier discharge system for air disinfection[J]. Journal of Hazardous Materials, 2022, 435: 129075. doi: 10.1016/j.jhazmat.2022.129075 [4] Kinnares V, Hothongkham P. Circuit analysis and modeling of a phase-shifted pulsewidth modulation full-bridge-inverter-fed ozone generator with constant applied electrode voltage[J]. IEEE Transactions on Power Electronics, 2010, 25(7): 1739-1752. doi: 10.1109/TPEL.2010.2042075 [5] Li Ju, Ma Cunhua, Zhu Shengjie, et al. A review of recent advances of dielectric barrier discharge plasma in catalysis[J]. Nanomaterials, 2019, 9: 1428. doi: 10.3390/nano9101428 [6] 张建忠, 钱正国. 一种基于脉冲均匀调制功率控制的介质阻挡放电型臭氧发生器供电电源: 106505871A[P]. 2017-03-15Zhang Jianzhong, Qian Zhengguo. Symmetrical pulse density modulation power control-based dielectric barrier discharge ozone generator power supply source: 106505871A[P]. 2017-03-15 [7] 钱正国. DBD臭氧发生电源的设计与控制策略研究[D]. 南京: 东南大学, 2018Qian Zhengguo. Control strategy research and design of DBD ozone generation[D]. Nanjing: Southeast University, 2018 [8] 穆昱. DBD电源设计与负载等效模型的研究[D]. 郑州: 郑州大学, 2018Mu Yu. Research on DBD power supply design and load equivalent model[D]. Zhengzhou: Zhengzhou University, 2018 [9] 严其林. DBD型臭氧发生器负载特性及新型供电电源研究[D]. 广州: 广东工业大学, 2015Yan Qilin. Research on the load characteristic and power supply for DBD type ozone generation[D]. Guangzhou: Guangdong University of Technology, 2015 [10] 程易, 刘昌俊. 低温等离子体化工[M]. 北京: 化学工业出版社, 2020Cheng Yi, Liu Changjun. Low temperature plasma chemical engineering[M]. Beijing: Chemical Industry Press, 2020 [11] 王毅. PSPICE在磁耦合电路教学中的应用[J]. 福建师范大学学报(自然科学版), 2003, 19(4):106-109Wang Yi. Application of PESPICE in magnetically coupling circuit teaching[J]. Journal of Fujian Normal University (Natural Science Edition), 2003, 19(4): 106-109 [12] 聂剑红, 孙力, 刘英. 脉冲压缩磁开关串联系统的优化设计[J]. 哈尔滨工业大学学报, 2004, 36(5):660-663 doi: 10.3321/j.issn:0367-6234.2004.05.027Nie Jianhong, Sun Li, Liu Ying. Optimal design of pulse compression magnetic switch serial system[J]. Journal of Harbin Institute of Technology, 2004, 36(5): 660-663 doi: 10.3321/j.issn:0367-6234.2004.05.027 [13] McMurray W. Selection of snubbers and clamps to optimize the design of transistor switching converters[J]. IEEE Transactions on Industry Applications, 1980, IA-16(4): 513-523. doi: 10.1109/TIA.1980.4503823 [14] Melville W S. The use of saturable reactors as discharge devices for pulse generators[J]. Journal of the Institution of Electrical Engineers, 1951, 1951(6): 179-181. doi: 10.1049/jiee-2.1951.0077 [15] 朱雨翔, 兰生, 张宇航. 基于磁压缩开关高压脉冲发生器设计与研究[J]. 高压电器, 2017, 53(9):60-65Zhu Yuxiang, LAN Sheng, ZHANG Yuhang. Design of high-voltage pulse generator based on the theory of magnetic pulse compression[J]. High Voltage Apparatus, 2017, 53(9): 60-65 [16] 韩毅博. 基于脉冲磁元件的重频纳秒脉冲源研究[D]. 武汉: 华中科技大学, 2016Han Yibo. Study on repetitive nanosecond pulse generator based on pulse magnetic components[D]. Wuhan: Huazhong University of Science and Technology, 2016 [17] 黄伟民, 邵涛, 张东东, 等. 小型高压重复频率微秒脉冲电源及其放电应用[J]. 强激光与粒子束, 2014, 26:045044 doi: 10.11884/HPLPB201426.045044Huang Weimin, Shao Tao, Zhang Dongdong, et al. A compact high voltage microsecond pulse power supply and its discharge application[J]. High Power Laser and Particle Beams, 2014, 26: 045044 doi: 10.11884/HPLPB201426.045044 -