留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核反应堆一回路超压泄放载荷影响因素研究

刘昭然 李澍 佟立丽 曹学武

刘昭然, 李澍, 佟立丽, 等. 核反应堆一回路超压泄放载荷影响因素研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250012
引用本文: 刘昭然, 李澍, 佟立丽, 等. 核反应堆一回路超压泄放载荷影响因素研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250012
Liu Zhaoran, Li Shu, Tong Lili, et al. Research on influencing factors of overpressure discharge load in the primary system of nuclear reactors[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250012
Citation: Liu Zhaoran, Li Shu, Tong Lili, et al. Research on influencing factors of overpressure discharge load in the primary system of nuclear reactors[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250012

核反应堆一回路超压泄放载荷影响因素研究

doi: 10.11884/HPLPB202537.250012
详细信息
    作者简介:

    刘昭然,liuzhaoran@sjtu.edu.cn

    通讯作者:

    佟立丽,lltong@sjtu.edu.cn

  • 中图分类号: TL364

Research on influencing factors of overpressure discharge load in the primary system of nuclear reactors

  • 摘要: 当核反应堆一回路系统发生超压时,可采用超压泄放系统将高温高压流体通过安全阀及下游管道向水池泄放以实现降压,但是安全阀的快速开启会导致流体剧烈释放,可能对管道及水池施加剧烈地瞬态载荷冲击。建立了包括压力容器、管道及水池的系统性分析模型,用于分析管道及水池处的载荷特征。结果表明:超压泄放过程中阀门入口存在水封及开启时间减小会使管道及水池所受载荷峰值增大。喷嘴淹没深度减小或水池截面积增大,水池处载荷峰值减小。
  • 图  1  EPRI/CE 测试装置图[9]

    Figure  1.  Diagram of the EPRI/CE experiment facility[9]

    图  2  计算模型

    Figure  2.  Diagram of the calculation model

    图  3  热工参数变化对比

    Figure  3.  Comparison of thermal parameter changes

    图  4  管道泄放力对比

    Figure  4.  Pipeline discharge force comparison

    图  5  管道系统及水池处热工与载荷响应变化

    Figure  5.  Diagram of thermal and load responses of pipelines and pool

    图  6  水池处空泡份额及压力云图

    Figure  6.  Diagram of void fraction and pressure contour map at pool

    图  7  泄放流体质量流量与管道载荷变化

    Figure  7.  Diagram of variation in mass flow rate and pipe load

    图  8  泄放流体质量与管道载荷变化

    Figure  8.  Diagram of variation in mass and pipe load

    图  9  喷嘴上游压力和水池压力峰值变化

    Figure  9.  The upstream pressure of the nozzle and peak of pool pressure varies with water seal volume changes

    图  10  喷嘴上游压力和水池压力峰值变化

    Figure  10.  Diagram of the sparger upstream pressure and peak of pool pressure varies with valve opening time changes

    图  11  喷嘴上游压力和水池压力峰值变化

    Figure  11.  Diagram of the sparger upstream pressure and peak of pool pressure varies with sparger flooding depth changes

    图  12  水池液位随水池截面积变化

    Figure  12.  Diagram of the liquid level of the pool varies and peak of pool pressure with the cross-sectional area of the pool

    表  1  管道尺寸表

    Table  1.   Piping geometric parameters

    pipe segment area/m2 length/m direction
    1 0.01864 1.6764 horizontal
    2 0.01864 1.8288 vertical
    2 0.06557 4.5720 vertical
    3 0.06557 13.2283 horizontal
    4 0.06557 0.4572 vertical
    下载: 导出CSV
  • [1] Shang Zhengrun, Lv Dufeng, Meng Zhaoming, et al. Depressurization behavior and strategy of automatic depressurization system for AP1000[C]//Proceedings of 2024 31st International Conference on Nuclear Engineering. 2024: V009T11A011.
    [2] Shang Zhengrun, Lv Dufeng, Yu Pei, et al. Research on operating characteristics of AP1000 automatic depressurization system under typical accident condition[J]. Annals of Nuclear Energy, 2024, 206: 110657. doi: 10.1016/j.anucene.2024.110657
    [3] Sun D C, Tian W X, Qiu S Z, et al. Scaling analysis of AP1000 ADS-4 entrainment and depressurization[J]. Progress in Nuclear Energy, 2014, 74: 71-78. doi: 10.1016/j.pnucene.2014.01.019
    [4] Cho S, Park C K, Kim H Y, et al. Air clearing oscillation produced by APR1400 prototype sparger[C]//Proceedings of the ASME 2002 Pressure Vessels and Piping Conference. 2002: 23-30.
    [5] Park C K, Cho S, Song C H, et al. Unit cell sparger test program and preliminary test results for APR1400[C]//Proceedings of the ASME 2002 Pressure Vessels and Piping Conference. 2002: 39-45.
    [6] Jo J C. Numerical simulation of pressure transients in a PWR main steam line system due to quick operations of pressure relief valve[C]//Proceedings of the ASME 2009 Pressure Vessels and Piping Conference. 2009: 35-43.
    [7] Yu S O, Jo J C. Analysis on transient piping pressure and force caused by high pressure steam flow disturbances[J]. Nuclear Engineering and Design, 2007, 237(3): 260-267. doi: 10.1016/j.nucengdes.2006.06.010
    [8] 王建平. AP1000自动卸压系统第1、2、3级优化研究[D]. 上海: 上海交通大学, 2018

    Wang Jianping. Research on the optimization of AP1000 ADS stage 1, 2, and 3[D]. Shanghai: Shanghai Jiao Tong University, 2018
    [9] Stubbe E J, VanHoenacker L, Otero R. RELAP5/MOD3 assessment for calculation of safety and relief valve discharge piping hydrodynamic loads[R]. NUREG/IA-0093, 1994.
    [10] 吴丹, 付冉, 王燕萍, 等. 两相排放载荷分析方法研究[J]. 核动力工程, 2015, 36(2): 160-164

    Wu Dan, Fu Ran, Wang Yanping, et al. Study on analysis method for two phase discharge force[J]. Nuclear Power Engineering, 2015, 36(2): 160-164
    [11] Lim J. RELAP5 analysis of hydrodynamic loads in response to PORV actuation[J]. Annals of Nuclear Energy, 2018, 115: 459-465. doi: 10.1016/j.anucene.2018.02.023
    [12] Cho S, Song C H, Park C K, et al. Air clearing pressure oscillation produced in a quenching tank by a prototype unit cell sparger of the APR1400[J]. Nuclear Engineering and Design, 2008, 238(7): 1525-1534. doi: 10.1016/j.nucengdes.2007.12.001
    [13] Park C K, Song C H. Influence of key parameters on the APR1400 in-containment refueling water storage tank hydrodynamic loads[J]. Journal of Nuclear Science and Technology, 2003, 40(10): 820-826. doi: 10.1080/18811248.2003.9715424
    [14] Park C K, Song C H, Jun H G. Experimental investigation of the steam condensation phenomena due to a multi-hole sparger[J]. Journal of Nuclear Science and Technology, 2007, 44(4): 548-557. doi: 10.1080/18811248.2007.9711844
    [15] Rayleigh L. VIII. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1917, 34(200): 94-98. doi: 10.1080/14786440808635681
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  29
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-13
  • 修回日期:  2025-06-18
  • 录用日期:  2025-07-04
  • 网络出版日期:  2025-07-28

目录

    /

    返回文章
    返回