留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于340 GHz返波管的梯形双脊波导慢波结构

石惠芬 岳玲娜 高博宁 徐进 蔡金赤 殷海荣 王文祥 徐勇 魏彦玉

石惠芬, 岳玲娜, 高博宁, 等. 用于340 GHz返波管的梯形双脊波导慢波结构[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250069
引用本文: 石惠芬, 岳玲娜, 高博宁, 等. 用于340 GHz返波管的梯形双脊波导慢波结构[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250069
Shi Huifen, Yue Lingna, Gao Boning, et al. Trapezoidal double ridge waveguide slow wave structure for 340 GHz backward wave oscillator[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250069
Citation: Shi Huifen, Yue Lingna, Gao Boning, et al. Trapezoidal double ridge waveguide slow wave structure for 340 GHz backward wave oscillator[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250069

用于340 GHz返波管的梯形双脊波导慢波结构

doi: 10.11884/HPLPB202537.250069
基金项目: 四川省自然科学基金面上项目 (2023NSFSC0454)
详细信息
    作者简介:

    石惠芬,202321021405@std.uestc.edu.cn

    通讯作者:

    岳玲娜,lnyue@uestc.edu.cn

  • 中图分类号: TN125+.1

Trapezoidal double ridge waveguide slow wave structure for 340 GHz backward wave oscillator

  • 摘要: 为进一步提高返波管的耦合阻抗和输出功率,提出了一种梯形双脊波导慢波结构。与正弦双脊波导和平顶型正弦双脊波导相比,在归一化相速度基本一致时,梯形双脊波导的电子注通道中心轴线耦合阻抗和截面平均耦合阻抗都得到了显著提升。仿真结果显示,在320~360 GHz频带范围内,其平均耦合阻抗较正弦双脊波导提升78.33%~86.97%,较平顶型正弦双脊波导提升至少46.65%。在相同工作条件及频带范围内,梯形双脊波导返波管在340 GHz频段的输出功率为5.55~8.03 W,比正弦双脊波导返波管提升26.97%~73.44%,比平顶型正弦双脊波导返波管提升33.65%~52.47%。此时三种返波管均为最佳管长,梯形双脊波导返波管可比另两种结构缩短至少16.5%。
  • 图  1  三种慢波结构对比图

    Figure  1.  Comparison of three slow wave structures

    图  2  梯形双脊波导的尺寸示意图

    Figure  2.  Diagram of dimensions for TRWG

    图  3  采用圆形电子注通道的梯形双脊波导的三维模型

    Figure  3.  3D model of TRWG with circle beam channel

    图  4  三种慢波结构的单周期电场分布

    Figure  4.  Electric field distribution of single period for three slow wave structures

    图  5  梯形双脊波导上底宽度w对高频特性的影响

    Figure  5.  Impact of width of trapezoidal upper base w of TRWG on high-frequency characteristics

    图  6  三种结构的色散特性和耦合阻抗对比

    Figure  6.  Comparison of dispersion and interaction impedance of the three structures

    图  7  梯形双脊波导返波管的传输模型

    Figure  7.  Transmission model of TRWG

    图  8  梯形双脊波导返波管的S参数

    Figure  8.  S-parameter of TRWG

    图  9  22 kV电压下PIC仿真结果

    Figure  9.  PIC simulation results under 22 kV voltage

    图  10  三种返波管的输出功率随工作频率变化图

    Figure  10.  Output power versus frequency of three backward wave oscillators

    表  1  梯形双脊波导尺寸参数

    Table  1.   Parameters of TRWG

    parameter value/mm
    width of TRWG a 0.80
    height of TRWG b 0.36
    width of ridge Rw 0.20
    width of trapezoidal upper base w 0.05
    height of trapezoid h 0.09
    period length p 0.16
    radius of circle beam channel r 0.08
    height of sheet beam channel hb 0
    下载: 导出CSV
  • [1] 王文祥. 微波工程技术[M]. 北京: 国防工业出版社, 2009: 1-677

    Wang Wenxiang. Microwave engineering technology[M]. Beijing: National Defense Industry Press, 2009: 1-677
    [2] Abrams R H, Levush B, Mondelli A A, et al. Vacuum electronics for the 21st century[J]. IEEE Microwave Magazine, 2001, 2(3): 61-72. doi: 10.1109/6668.951550
    [3] Qiu J X, Levush B, Pasour J, et al. Vacuum tube amplifiers[J]. IEEE Microwave Magazine, 2009, 10(7): 38-51. doi: 10.1109/MMM.2009.934517
    [4] Chong C K, Menninger W L. Latest advancements in high-power millimeter-wave helix TWTs[J]. IEEE Transactions on Plasma Science, 2010, 38(6): 1227-1238. doi: 10.1109/TPS.2010.2041940
    [5] Hu Linlin, Cai Jinchi, Chen Hongbin. Applications and development of terahertz backward wave oscillators[J]. Acta Electronica Sinica, 2016, 44(4): 974-982.
    [6] Tucek J C, Basten M A, Gallagher D A, et al. 220 GHz power amplifier development at Northrop Grumman[C]//Proceedings of the IVEC 2012. 2012: 553-554.
    [7] Tucek J, Kreischer K, Gallagher D, et al. Development and operation of a 650 GHz folded waveguide source[C]//Proceedings of 2007 IEEE International Vacuum Electronics Conference. 2007: 1-2.
    [8] Zhou Quanfeng, Song Rui, Lei Wenqiang, et al. Development of a 0.22THz folded waveguide travelling wave tube[C]//Proceedings of 2015 IEEE International Vacuum Electronics Conference. 2015: 1-2.
    [9] Wang Zhanliang, Zhou Qing, Gong Huarong, et al. Development of a 140-GHz folded-waveguide traveling-wave tube in a relatively larger circular electron beam tunnel[J]. Journal of Electromagnetic Waves and Applications, 2017, 31(17): 1914-1923. doi: 10.1080/09205071.2017.1341346
    [10] Tian Yanyan, Yue Lingna, Xu Jin, et al. A novel slow-wave structure—Folded rectangular groove waveguide for millimeter-wave TWT[J]. IEEE Transactions on Electron Devices, 2012, 59(2): 510-515. doi: 10.1109/TED.2011.2175929
    [11] Field M, Kimura T, Atkinson J, et al. Development of a 100-W 200-GHz high bandwidth mm-wave amplifier[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2122-2128. doi: 10.1109/TED.2018.2790411
    [12] Zhang Changqing, Pan Pan, Cai Jun, et al. Demonstration of a PCM-focused sheet beam TWT amplifier at G-band[J]. IEEE Transactions on Electron Devices, 2023, 70(6): 2798-2803. doi: 10.1109/TED.2022.3233291
    [13] 赖剑强. 交错双栅慢波结构的应用研究[D]. 成都: 电子科技大学, 2012: 69-90

    Lai Jianqiang. Research on applications of staggered double vane slow-wave structure[D]. Chengdu: University of Electronic Science and Technology of China, 2012: 69-90
    [14] 赖剑强, 魏彦玉, 黄民智, 等. W波段交错双栅返波振荡器高频系统[J]. 强激光与粒子束, 2012, 24(9):2164-2168 doi: 10.3788/HPLPB20122409.2164

    Lai Jianqiang, Wei Yanyu, Huang Minzhi, et al. RF circuit for W-band staggered double vane backward wave oscillator[J]. High Power Laser and Particle Beams, 2012, 24(9): 2164-2168 doi: 10.3788/HPLPB20122409.2164
    [15] 冯霖琦, 岳玲娜, 徐进, 等. 一种宽带瓦量级交错双栅脊波导返波振荡器的研究[J]. 强激光与粒子束, 2023, 35:123001

    Feng Linqi, Yue Lingna, Xu Jin, et al. Investigation of a wide band watt level backward wave oscillator based on ridged double staggered grating waveguide[J]. High Power Laser and Particle Beams, 2023, 35: 123001
    [16] Xu Xiong, Wei Yanyu, Shen Fei, et al. Sine waveguide for 0.22-THz traveling-wave tube[J]. IEEE Electron Device Letters, 2011, 32(8): 1152-1154. doi: 10.1109/LED.2011.2158060
    [17] Zhang Luqi, Wei Yanyu, Jiang Xuebing, et al. A truncated sine waveguide for G-band TWT[C]//Proceedings of 2017 Eighteenth International Vacuum Electronics Conference. 2017: 1-2.
    [18] Lu Zhigang, Zhu Meiling, Ding Kesen, et al. Investigation of double tunnel sine waveguide slow-wave structure for terahertz dual-beam TWT[J]. IEEE Transactions on Electron Devices, 2020, 67(5): 2176-2181. doi: 10.1109/TED.2020.2981992
    [19] Zhang Luqi, Wei Yanyu, Guo Guo, et al. A ridge-loaded sine waveguide for G-band traveling-wave tube[J]. IEEE Transactions on Plasma Science, 2016, 44(11): 2832-2837. doi: 10.1109/TPS.2016.2605161
    [20] Zhang Luqi, Wei Yanyu, Guo Guo, et al. An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide[J]. Journal of Physics D: Applied Physics, 2016, 49: 235102. doi: 10.1088/0022-3727/49/23/235102
    [21] Yue Lingna, Bai Ziqing, Feng Linqi, et al. Investigation of a 300–350 GHz BWO with flat-roofed sine double ridge waveguide and Brewster window[J]. IEEE Transactions on Electron Devices, 2024, 71(11): 7049-7055. doi: 10.1109/TED.2024.3453784
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  30
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-11
  • 修回日期:  2025-06-18
  • 录用日期:  2025-07-12
  • 网络出版日期:  2025-07-30

目录

    /

    返回文章
    返回