留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地磁活动对人工辐射带电子演化规律的影响

曹盼 郝建红 薛碧曦 赵强 张芳 范杰清 董志伟

曹盼, 郝建红, 薛碧曦, 等. 地磁活动对人工辐射带电子演化规律的影响[J]. 强激光与粒子束, 2025, 37: 086003. doi: 10.11884/HPLPB202537.250083
引用本文: 曹盼, 郝建红, 薛碧曦, 等. 地磁活动对人工辐射带电子演化规律的影响[J]. 强激光与粒子束, 2025, 37: 086003. doi: 10.11884/HPLPB202537.250083
Cao Pan, Hao Jianhong, Xue Bixi, et al. Impact of geomagnetic activity on the evolution patterns of artificial radiation belt electrons[J]. High Power Laser and Particle Beams, 2025, 37: 086003. doi: 10.11884/HPLPB202537.250083
Citation: Cao Pan, Hao Jianhong, Xue Bixi, et al. Impact of geomagnetic activity on the evolution patterns of artificial radiation belt electrons[J]. High Power Laser and Particle Beams, 2025, 37: 086003. doi: 10.11884/HPLPB202537.250083

地磁活动对人工辐射带电子演化规律的影响

doi: 10.11884/HPLPB202537.250083
基金项目: 国家青年科学基金项目(12305218)
详细信息
    作者简介:

    曹 盼,cp05252001@163.com

    通讯作者:

    薛碧曦,xue_bx@163.com

  • 中图分类号: TL7

Impact of geomagnetic activity on the evolution patterns of artificial radiation belt electrons

  • 摘要: 人工辐射带对空间飞行器寿命和性能存在潜在威胁,高纬度爆点产生的大量高能粒子会注入地球外辐射带,而外辐射带相较于内辐射带更容易受到地磁活动的影响。基于VERB3D模型构建了人工辐射带模型,并从三个参量对高L壳层人工辐射带内的电子的扩散和演化进行了数值模拟,研究分析了地磁活动对电子演化规律的影响。强地磁活动不仅会导致等离子体层发生明显内缩,还会使等离子体层内外波的水平指数级增强。由于波粒互作用是辐射带粒子扩散的主要机制,因此强地磁活动会显著加速人工辐射带的扩散过程。当地磁活动剧烈时,原本非均匀分布的人工辐射带电子会经历明显的扩散加速过程,电子通量显著衰减,在较短时间内达到径向、能量和投掷角的稳定分布状态,这种稳定分布的高能电子通量也会受到地磁活动的显著影响而持续下降。人工辐射带的加速扩散将有效降低其对空间飞行器的损伤程度,可为空间飞行器的防护设计提供新的理论依据。
  • 图  1  2012年10月1日至11月30日的能量为2.0 MeV投掷角为85°的电子通量

    Figure  1.  The electron flux with an energy of 2.0 MeV and an injection angle of 85° from October 1, 2012, to November 30, 2012

    图  2  2012年10月1日至11月30日的能量为3.6 MeV投掷角为85°的电子通量

    Figure  2.  The electron flux with an energy of 2.0 MeV and an injection angle of 85° from October 1, 2012, to November 30, 2012

    图  3  等离子体层顶变化对比

    Figure  3.  Comparison of plasmapause variations

    图  4  地磁活动强烈时期的人工辐射带扩散情况

    Figure  4.  The diffusion of artificial radiation belts during periods of intense geomagnetic activity

    图  5  地磁活动平静时期的人工辐射带扩散情况

    Figure  5.  The diffusion of artificial radiation belts during periods of quiet geomagnetic activity

    图  6  地磁活动强烈时期人工辐射带的径向扩散情况

    Figure  6.  The radial diffusion of artificial radiation belts during periods of intense geomagnetic activity

    图  7  地磁活动平静时期人工辐射带的径向扩散情况

    Figure  7.  The radial diffusion of artificial radiation belts during periods of quiet geomagnetic activity

    图  8  非正交的能量-投掷角网格

    Figure  8.  Non-orthogonal Energy-Pitch Angle Grid

    图  9  2012年10月7日至17日期间电子的能量和投掷角演化(L=5.5)

    Figure  9.  The evolution of electron energy and pitch angle distributions during October 7-17, 2012 (L=5.5)

    图  10  2012年10月21日至31日期间电子的能量和投掷角演化(L=5.5)

    Figure  10.  The evolution of electron energy and pitch angle distributions during October 21-31, 2012(L=5.5)

  • [1] McIlwain C E. The radiation belts, natural and artificial[J]. Science, 1963, 142(3590): 355-361. doi: 10.1126/science.142.3590.355
    [2] Van Allen J A, McIlwain C E, Ludwig G H. Satellite observations of electrons artificially injected into the geomagnetic field[J]. Journal of Geophysical Research, 1959, 64(8): 877-891. doi: 10.1029/JZ064i008p00877
    [3] Hess W N. The artificial radiation belt made on July 9, 1962[J]. Journal of Geophysical Research, 1963, 68(3): 667-683. doi: 10.1029/JZ068i003p00667
    [4] 王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010

    Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. Parameter handbook of high attitude nuclear detonation effects[M]. Beijing: Atomic Energy Press, 2010
    [5] Dupont D G. Nuclear explosions in orbit[J]. Scientific American, 2004, 290(6): 100-107. doi: 10.1038/scientificamerican0604-100
    [6] 顾旭东, 赵正予, 倪彬彬, 等. 高空核爆炸形成人工辐射带的数值模拟[J]. 物理学报, 2009, 58(8):5871-5878 doi: 10.7498/aps.58.5871

    Gu Xudong, Zhao Zhengyu, Ni Binbin, et al. Numerical simulation of the formation of artificial radiation belt caused by high altitude nuclear detonation[J]. Acta Physics Sinica, 2009, 58(8): 5871-5878 doi: 10.7498/aps.58.5871
    [7] Subbotin D A, Shprits Y Y. Three-dimensional modeling of the radiation belts using the Versatile Electron Radiation Belt (VERB) code[J]. Space Weather, 2009, 7: S10001.
    [8] Fok M C, Buzulukova N Y, Chen S H, et al. The comprehensive inner magnetosphere-ionosphere model[J]. Journal of Geophysical Research: Space Physics, 2014, 119(9): 7522-7540. doi: 10.1002/2014JA020239
    [9] 王建国, 刘利, 牛胜利, 等. 高空核爆炸环境数值模拟[J]. 现代应用物理, 2023, 14:010101 doi: 10.12061/j.issn.2095-6223.2023.010101

    Wang Jianguo, Liu Li, Niu Shengli, et al. Numerical simulations of environmental parameters of high-altitude nuclear explosion[J]. Modern Applied Physics, 2023, 14: 010101 doi: 10.12061/j.issn.2095-6223.2023.010101
    [10] 朱金辉, 左应红, 刘利, 等. 蒙特卡罗方法在核爆辐射环境模拟中的应用与发展[J]. 现代应用物理, 2023, 14:030104

    Zhu Jinhui, Zuo Yinghong, Liu Li, et al. Application and development of Monte Carlo method in simulation of nuclear explosion radiation environments[J]. Modern Applied Physics, 2023, 14: 030104
    [11] 牛胜利, 罗旭东, 王建国, 等. 高空核爆炸注入辐射带电子的大气扩散损失[J]. 计算物理, 2011, 28(4):569-575 doi: 10.3969/j.issn.1001-246X.2011.04.015

    Niu Shengli, Luo Xudong, Wang Jianguo, et al. Atmospheric diffusion loss of radiation belt trapped electrons injected by high altitude nuclear detonation[J]. Chinese Journal of Computational Physics, 2011, 28(4): 569-575 doi: 10.3969/j.issn.1001-246X.2011.04.015
    [12] Wang Jianguo, Liu Li, Zuo Yinghong, et al. Research progress in numerical simulation of environmental parameters generated by the high-altitude nuclear explosions[J]. IEEE Transactions on Nuclear Science, 2025, 72(3): 884-900. doi: 10.1109/TNS.2025.3530013
    [13] Cunningham G S, Loridan V, Ripoll J F, et al. Neoclassical diffusion of radiation-belt electrons across very low L-shells[J]. Journal of Geophysical Research: Space Physics, 2018, 123(4): 2884-2901. doi: 10.1002/2017JA024931
    [14] Drozdov A Y, Shprits Y Y, Orlova K G, et al. Energetic, relativistic, and ultrarelativistic electrons: comparison of long-term VERB code simulations with Van Allen Probes measurements[J]. Journal of Geophysical Research: Space Physics, 2015, 120(5): 3574-3587. doi: 10.1002/2014JA020637
    [15] Shprits Y Y, Subbotin D A, Meredith N P, et al. Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: local acceleration and loss[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70(14): 1694-1713. doi: 10.1016/j.jastp.2008.06.014
    [16] Brautigam D H, Albert J M. Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm[J]. Journal of Geophysical Research: Space Physics, 2000, 105(A1): 291-309. doi: 10.1029/1999JA900344
    [17] Subbotin D A, Shprits Y Y, Ni Binbin. Long-term radiation belt simulation with the VERB 3-D code: comparison with CRRES observations[J]. Journal of Geophysical Research: Space Physics, 2011, 116: A12210. doi: 10.1029/2011JD015663
    [18] Orlova K, Spasojevic M, Shprits Y. Activity-dependent global model of electron loss inside the plasmasphere[J]. Geophysical Research Letters, 2014, 41(11): 3744-3751. doi: 10.1002/2014GL060100
    [19] Subbotin D A, Shprits Y Y. Three-dimensional radiation belt simulations in terms of adiabatic invariants using a single numerical grid[J]. Journal of Geophysical Research: Space Physics, 2012, 117: A05205.
    [20] O'Brien B J, Laughlin C D, Van Allen J A. Geomagnetically trapped radiation produced by a high-altitude nuclear explosion on July 9, 1962[J]. Nature, 1962, 195(4845): 939-943. doi: 10.1038/195939a0
  • 加载中
图(10)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  35
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-17
  • 修回日期:  2025-06-30
  • 录用日期:  2025-06-30
  • 网络出版日期:  2025-07-24
  • 刊出日期:  2025-07-26

目录

    /

    返回文章
    返回