A waveform recovery algorithm for transient intense electromagnetic pulse measurement in complex environments
-
摘要: 针对瞬态强电磁脉冲远场测量中因地面反射波叠加引起波形畸变的问题,设计了一种基于单极子阵列抑制地面散射的波形复原算法。分别从频域和时域推导基于单极子阵列测量波形提取直达波的原理,分析了计算结果中趋势项及其周期性振荡的原因,对比了不同算法的优缺点,以及不同场景下择优选择算法的依据。为验证算法有效性,在存在地面反射条件下构建了测量系统并开展了实验测试,结果表明,在时域天线不同主轴距离的电场测量中,波形复原算法提取的直达波均与参考直达波一致,幅度误差在0.2 dB以内,二者主波形保真系数大于0.99。测量结果验证该波形复原算法可有效抑制复杂环境中地面散射影响,能够准确实现对直达波波形提取,为该类场景下时域辐射系统参数分离和测量提供有效的方法支撑。Abstract:
Background Transient intense electromagnetic pulses, characterized by extremely high peak field strength and broad frequency domain distribution, pose severe electromagnetic safety threats to electronic systems. Their accurate measurement is crucial for evaluating radiation source performance and the effectiveness of protection measures. However, ground-reflected waves often cause significant waveform distortion in far-field measurements. Existing narrow-spectrum suppression methods fail due to bandwidth limitations, while environmental adjustment approaches are impractical in complex scenarios, and traditional array beamforming techniques are restricted by signal correlation requirements.Purpose To address the waveform distortion caused by ground-reflected waves in far-field measurements of transient intense electromagnetic pulses, this study proposes a monopole array-based waveform recovery algorithm. It aims to eliminate ground scattering interference and accurately extract direct waves, providing support for related measurements and evaluations.Methods The principle of direct wave extraction based on monopole array was derived in both frequency and time domains. Potential error sources and corresponding optimization schemes were analyzed. A measurement system was built under ground reflection conditions for experimental tests, and the performance of different algorithms was compared.Results Experimental results show that the direct waves extracted by the proposed algorithm match the reference direct waves well, with amplitude error within 0.2 dB and main waveform fidelity coefficient greater than 0.99. The time-domain algorithm is more concise and less affected by interference, while the frequency-domain algorithm enables direct wave recovery with a single system, making it more cost-effective. Compared with traditional technologies, the algorithm expands the applicable frequency band and significantly reduces amplitude calculation error.Conclusions The proposed waveform recovery algorithm can effectively suppress ground scattering effects and accurately extract direct waves. It provides reliable support for parameter separation in transient pulse measurements and state evaluation of radiation systems. -
表 1 不同算法计算结果对比表
Table 1. Comparison table of calculation results using different algorithms
algorithm measurement position/m fidelity coefficient amplitude error/dB frequency domain algorithm 20 0.9945 0.095 time domain algorithm 20 0.9953 0.112 frequency domain algorithm 30 0.9921 0.164 time domain algorithm 30 0.9947 0.138 -
[1] 王震, 蔡金良, 秦风, 等. 车辆线缆瞬态电磁脉冲耦合仿真与抑制技术[J]. 强激光与粒子束, 2021, 33: 123019 doi: 10.11884/HPLPB202133.210227Wang Zhen, Cai Jinliang, Qin Feng, et al. Vehicle cable electromagnetic pulse coupling simulation and suppression[J]. High Power Laser and Particle Beams, 2021, 33: 123019 doi: 10.11884/HPLPB202133.210227 [2] 秦锋, 王旭桐, 陈伟, 等. 高空电磁脉冲作用下配电变压器瞬态响应与失效机理[J]. 中国电机工程学报, 2023, 43(17): 6924-6932Qin Feng, Wang Xutong, Chen Wei, et al. Transient response and failure mechanism of distribution transformer under high-altitude electromagnetic pulse[J]. Proceedings of the CSEE, 2023, 43(17): 6924-6932 [3] 毕岚, 薛谦忠, 席宝坤. 用于瞬态高功率脉冲辐射的超宽带天线设计[J]. 强激光与粒子束, 2018, 30: 083007 doi: 10.11884/HPLPB201830.180001Bi Lan, Xue Qianzhong, Xi Baokun. Design of ultra-wideband antenna for high-power transient pulse radiation[J]. High Power Laser and Particle Beams, 2018, 30: 083007 doi: 10.11884/HPLPB201830.180001 [4] Xie Haiyan, Du Taijiao, Zhang Maoyu, et al. Theoretical and experimental study of effective coupling length for transmission lines illuminated by HEMP[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(6): 1529-1538. doi: 10.1109/TEMC.2015.2463814 [5] Qin Feng, Mao Congguang, Wu Gang, et al. Characteristic parameter estimations of EMP energy spectrum[C]//Proceedings of 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility. 2016: 11-13. [6] Savage E, Gilbert J, Radasky W. The early-time (E1) high-altitude electromagnetic pulse (HEMP) and its impact on the U. S. power grid[R]. Oak Ridge: Oak Ridge National Laboratory, 2010. [7] Parfenov Y V, Zdoukhov L N, Shurupov A V, et al. Research of flashover of power line insulators due to high-voltage pulses with power ON and power OFF[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(3): 467-474. doi: 10.1109/TEMC.2012.2236094 [8] Gurevich V. EMP and its impact on electrical power system: standards and reports[J]. International Journal of Research and Innovation in Applied Science, 2016, 1(6): 6-10. [9] 黄欣, 陈亚洲, 王玉明, 等. 核电磁脉冲对导航接收系统辐照效应研究[J]. 兵器装备工程学报, 2022, 43(2): 274-279 doi: 10.11809/bqzbgcxb2022.02.043Huang Xin, Chen Yazhou, Wang Yuming, et al. Research on radiation effects of nuclear electromagnetic pulse on navigation receiving system[J]. Journal of Ordnance Equipment Engineering, 2022, 43(2): 274-279 doi: 10.11809/bqzbgcxb2022.02.043 [10] 冯寒亮, 赵芮, 王娟, 等. 美军2021财年核电磁脉冲领域国防预算概况与简析[J]. 国防科技, 2021, 42(3): 107-114Feng Hanliang, Zhao Rui, Wang Juan, et al. Analysis of US defense budget for nuclear electromagnetic pulse field for FY2021[J]. National Defense Science Technology, 2021, 42(3): 107-114 [11] 崔海娟, 杨宏春, 阮成礼, 等. 阵列辐射瞬态电磁脉冲能量合成特性研究[J]. 电波科学学报, 2011, 26(5): 825-830Cui Haijuan, Yang Hongchun, Ruan Chengli, et al. Superposed energy density of transient electromagnetic pulses from antenna array[J]. Chinese Journal of Radio Science, 2011, 26(5): 825-830 [12] Li Xianli, Cui Yi, Yao Gaolong, et al. Measurement of high-power transient electromagnetic pulse field with integrated photonic electric-field sensor[J]. Instrumentation Science & Technology, 2024, 52(2): 151-161. [13] 姜云升. 瞬态强电磁脉冲场测量关键技术研究[D]. 北京: 清华大学, 2021Jiang Yunsheng. Research on key technology of transient high power electromagnetic pulse field measurement[D]. Beijing, China: Tsinghua University, 2021 [14] GJB8218-2014, 高功率超宽谱脉冲辐射场测量方法[S]GJB 8218-2014, Measure method for the high power ultra-wide band pulse radiation field[S] [15] 张金颢, 周恒, 张守龙, 等. 基于仿真及神经网络的大型电磁脉冲模拟器近区场计算[J]. 电子学报, 2023, 51(3): 712-719 doi: 10.12263/DZXB.20211137Zhang Jinhao, Zhou Heng, Zhang Shoulong, et al. Calculation of near-field of large-scale electromagnetic pulse simulator based on simulation and neural network[J]. Acta Electronica Sinica, 2023, 51(3): 712-719 doi: 10.12263/DZXB.20211137 [16] Wei Jinhong, Zhang Shoulong, Yan Youjie, et al. Development of transient electric field sensor based on microstrip line[C]//2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT). 2018: 1-3. [17] Jiang Dan, Su Yun, He Pengjun, et al. Simulation and experiment technology of EMP measurement[C]//2016 CIE International Conference on Radar (RADAR). 2016: 1-3. [18] Fu Yapeng, Gao Cheng, Zhu Hui. The influence of sensors structure on measurement accuracy of pulse electric fields[C]//2017 IEEE 5th International Symposium on Electromagnetic Compatibility (EMC-Beijing). 2017: 1-3. [19] Liu Weidong, Liu Shanghe, Hu Xiaofeng. Transient electric field measurement system analysis and optimization design[C]//2013 International Workshop on Microwave and Millimeter Wave Circuits and System Technology. 2013: 1-4. [20] 朱四桃, 朱柏承, 樊亚军. 超宽谱电磁脉冲辐射场测量系统[J]. 强激光与粒子束, 2006, 18(2): 261-264Zhu Sitao, Zhu Bocheng, Fan Yajun. Measurement system of ultra-wide spectrum electromagnetic pulse radiating field[J]. High Power Laser and Particle Beams, 2006, 18(2): 261-264 [21] 蒋丹, 李奇威, 荆晓鹏, 等. 小型电场传感器分析与设计[J]. 火控雷达技术, 2016, 45(4): 74-77 doi: 10.3969/j.issn.1008-8652.2016.04.016Jiang Dan, Li Qiwei, Jing Xiaopeng, et al. Analysis and design of small-scale electric-field sensor[J]. Fire Control Radar Technology, 2016, 45(4): 74-77 doi: 10.3969/j.issn.1008-8652.2016.04.016 [22] 李仙丽, 王冬冬, 李向龙, 等. 基于电光聚合物缺陷光子晶体的脉冲电场测量技术[J]. 电子学报, 2021, 49(9): 1691-1700 doi: 10.12263/DZXB.20200501Li Xianli, Wang Dongdong, Li Xianglong, et al. Photonic crystal with electro-optic polymer defect for a pulse electric field sensor[J]. Acta Electronica Sinica, 2021, 49(9): 1691-1700 doi: 10.12263/DZXB.20200501 [23] 于建立, 程龙, 樊亚东, 等. 大地电参数和地面等值厚度对地闪通道附近垂直电场的影响[J]. 电子学报, 2022, 50(5): 1159-1166 doi: 10.12263/DZXB.20210120Yu Jianli, Cheng Long, Fan Yadong, et al. Influence of geoelectric parameters and ground equivalent thickness on vertical electric fields nearby the return-stroke channel[J]. Acta Electronica Sinica, 2022, 50(5): 1159-1166 doi: 10.12263/DZXB.20210120 [24] 陈伯孝, 胡铁军, 郑自良, 等. 基于波瓣分裂的米波雷达低仰角测高方法及其应用[J]. 电子学报, 2007, 35(6): 1021-1025 doi: 10.3321/j.issn:0372-2112.2007.06.003Chen Boxiao, Hu Tiejun, Zheng Ziliang, et al. Method of altitude measurement based on beam split in VHF radar and its application[J]. Acta Electronica Sinica, 2007, 35(6): 1021-1025 doi: 10.3321/j.issn:0372-2112.2007.06.003 [25] Sollie M L, Bryne T H, Gryte K, et al. Reducing ground reflection multipath errors for Bluetooth angle-of-arrival estimation by combining independent antenna arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(6): 1391-1395. doi: 10.1109/LAWP.2023.3243166 [26] Karlsson K, Toss H, Costagliola F. Reducing influence from ground reflection during RCS characterization of automotive targets[C]//2019 13th European Conference on Antennas and Propagation (EuCAP). 2019: 1-5. [27] 蒋廷勇, 高林, 刘小龙, 等. 抑制地面反射影响的高功率微波辐射场测量方法[J]. 强激光与粒子束, 2015, 27: 123007 doi: 10.11884/HPLPB201527.123007Jiang Tingyong, Gao Lin, Liu Xiaolong, et al. Minimizing the impact of ground reflection on high power microwave E-field measurement[J]. High Power Laser and Particle Beams, 2015, 27: 123007 doi: 10.11884/HPLPB201527.123007 [28] 何伟. 基于DOA估计的超宽带信号接收波束成形设计与实现[D]. 西安: 西安电子科技大学, 2013He Wei. Design and implementation of receive beamforming for UWB signals based on DOA estimation[D]. Xi'an, China: Xidian University, 2013 -