留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳秒脉冲下去离子水中固体绝缘材料沿面闪络特性

陆庆珩 陈林 李逢 蒋吉昊 王杰 赵越 韩文辉 卫兵 黄子平

陆庆珩, 陈林, 李逢, 等. 纳秒脉冲下去离子水中固体绝缘材料沿面闪络特性[J]. 强激光与粒子束, 2025, 37: 085003. doi: 10.11884/HPLPB202537.250102
引用本文: 陆庆珩, 陈林, 李逢, 等. 纳秒脉冲下去离子水中固体绝缘材料沿面闪络特性[J]. 强激光与粒子束, 2025, 37: 085003. doi: 10.11884/HPLPB202537.250102
Lu Qingheng, Chen Lin, Li Feng, et al. Surface flashover characteristics of solid insulating materials in deionized water under nanosecond pulses[J]. High Power Laser and Particle Beams, 2025, 37: 085003. doi: 10.11884/HPLPB202537.250102
Citation: Lu Qingheng, Chen Lin, Li Feng, et al. Surface flashover characteristics of solid insulating materials in deionized water under nanosecond pulses[J]. High Power Laser and Particle Beams, 2025, 37: 085003. doi: 10.11884/HPLPB202537.250102

纳秒脉冲下去离子水中固体绝缘材料沿面闪络特性

doi: 10.11884/HPLPB202537.250102
基金项目: 国家自然科学基金项目(12275255)
详细信息
    作者简介:

    陆庆珩,lqhxs02@163.com

    通讯作者:

    陈 林,chenlin_mail@163.com

  • 中图分类号: TL503.3

Surface flashover characteristics of solid insulating materials in deionized water under nanosecond pulses

  • 摘要: 作为高功率脉冲装置中脉冲形成线或传输线(PFL/PTL)的常用绝缘介质,去离子水具有高介电常数、高击穿强度、良好自愈性以及低成本等优势,然而其中用于支撑内筒及实现前后端不同绝缘介质物理隔离的固体绝缘隔板往往是PFL/PTL绝缘的薄弱环节。为了评估典型固体绝缘材料在去离子水中的高压绝缘性能,利用工作电压最高约900 kV、脉冲上升时间约100 ns的高压绝缘实验平台,对MC尼龙、有机玻璃、交联聚苯乙烯以及高密度聚乙烯等四种典型固体绝缘材料在去离子水中的沿面闪络特性进行了研究。实验采用圆形平板电极和圆柱形样品,获得了样品材料、厚度、电压作用时间以及表面粗糙度等因素对闪络电压和场强的影响。当样品厚度从0.5 cm增加至2 cm时,闪络电压线性增加,闪络场强指数减小;不同材料的闪络电压和场强排序为:MC尼龙≥有机玻璃>交联聚苯乙烯>高密度聚乙烯;随着电压作用时间缩短,闪络电压逐渐增加,电压作用时间在100 ns以内时,闪络电压基本保持稳定;当固体材料表面粗糙度从1.6 μm增加至12.5 μm时,闪络场强无明显变化。综合考虑闪络场强数据和抗冲击能力特性等因素,认为MC尼龙的综合性能相对最佳。
  • 图  1  高压绝缘实验平台

    Figure  1.  High voltage insulation test platform

    图  2  已完成液体沿面闪络实验腔装配的负载区

    Figure  2.  The experimental chamber for liquid surface flashover in the load region

    图  3  液体沿面闪络实验腔及电极组件

    Figure  3.  liquid surface flashover experimental chamber and electrode assembly

    图  4  腔内电场仿真结构及有限元参数设置

    Figure  4.  Simulation structure and finite element parameter settings

    图  5  腔内电场仿真结果

    Figure  5.  Simulation results of electric field

    图  6  典型闪络电压波形

    Figure  6.  Typical flashover voltage waveforms

    图  7  自击穿模式与触发模式闪络电压波形对比

    Figure  7.  Comparison of flashover voltage waveforms between self-breakdown mode and trigger mode

    图  8  闪络电压Uf和闪络场强Ef随样品厚度h的变化曲线

    Figure  8.  Curves of flashover voltage Uf and flashover field strength Ef vs sample thickness h

    图  9  放电通道烧蚀痕迹

    Figure  9.  Discharge channel ablation traces

    图  10  局部出现碎裂的有机玻璃样品

    Figure  10.  Fractured PMMA samples

    图  11  闪络电压波形(不同电压作用时间)

    Figure  11.  Flashover voltage waveform (different voltage application time)

    图  12  闪络电压随电压作用时间变化曲线

    Figure  12.  Curve of flashover voltage vs voltage application time

    图  13  不同表面粗糙度的有机玻璃样品

    Figure  13.  Samples of PMMA with different surface roughness

    图  14  闪络场强Uf随样品表面粗糙度Ra的变化曲线

    Figure  14.  Curve of flashover voltage Uf vs surface roughness Ra

    图  15  闪络场强拟合曲线

    Figure  15.  Flashover field strength fitting curve

  • [1] 曾正中. 实用脉冲功率技术引论[M]. 西安: 陕西科学技术出版社, 2003

    Zeng Zhengzhong. Introduction to practical pulsed power technology[M]. Xi’an: Shaanxi Science and Technology Press, 2003
    [2] Lehr J, Ron P. Foundations of pulsed power technology[M]. Piscataway: Wiley-IEEE Press, 2017.
    [3] Stoltzfus B, LeChien K, Savage M, et al. High voltage insulator improvements made in the oil and water sections of the Z machine at Sandia national laboratories in 2008[C]//2009 IEEE Pulsed Power Conference. 2009: 425-430.
    [4] Багив В В, Упаков Б Я. Исследование электрической прочности диэлектриков применительно к изоляции высоковольтных преобразовательных устройств[J]. Электричество, 1972, 4: СTP.76-79.
    [5] Sharma A, Acharya S, Nagesh K V, et al. Surface flashover in spacer at vacuum/oil interface[C]//20th International Symposium on Discharges and Electrical Insulation in Vacuum. 2002: 219-222.
    [6] 王珏, 邵涛, 严萍, 等. 纳秒级高压脉冲下变压器油中沿面闪络特性的实验研究[J]. 高压电器, 2005, 41(1):1-3 doi: 10.3969/j.issn.1001-1609.2005.01.001

    Wang Jue, Shao Tao, Yan Ping, et al. Experimental study on dielectric surface flashover under nanosecond pulse in transformer oil[J]. High Voltage Apparatus, 2005, 41(1): 1-3 doi: 10.3969/j.issn.1001-1609.2005.01.001
    [7] 李光杰. 纳秒脉冲下变压器油中绝缘介质沿面闪络特性的实验研究[D]. 北京: 中国科学院研究生院(电工研究所), 2006

    Li Guangjie. Experimental study on dielectric surface flashover under nanosecond pulse in transformer oil[D]. Beijing: Institute of Electrical Engineering of the Chinese Academy of Sciences, 2006
    [8] 卢为, 成永红, 王增彬, 等. 环氧及其复合材料在变压器油中的快脉冲闪络特性[J]. 西安交通大学学报, 2010, 44(10):83-87 doi: 10.7652/xjtuxb201010016

    Lu Wei, Cheng Yonghong, Wang Zengbin, et al. Flashover property of epoxy resin and epoxy composites under fast pulse in transformer oil[J]. Journal of Xi’an Jiaotong University, 2010, 44(10): 83-87 doi: 10.7652/xjtuxb201010016
    [9] Sinars D B, Sweeney M A, Alexander C S, et al. Review of pulsed power-driven high energy density physics research on Z at Sandia[J]. Physics of Plasmas, 2020, 27: 070501. doi: 10.1063/5.0007476
    [10] 黄涛, 丛培天, 张国伟, 等. "强光一号"加速器电路模拟与分析[C]//首届全国脉冲功率会议论文集. 2009: 897-900

    Huang Tao, Cong Peitian, Zhang Guowei, et al. Simulation and analysis of "Qiangguang-I" accelerator circuit[C]//The First National Pulsed Power Conference. 2009: 897-900
    [11] Smith J, Carlson R, Fulton R, et al. Performance of the Cygnus X-ray source[C]//IEEE Conference Record - Abstracts. 2002 IEEE International Conference on Plasma Science (Cat. No. 02CH37340). 2002: 326.
    [12] 邱孟通, 呼义翔, 吴伟, 等. 西北核技术研究所强脉冲辐射模拟装置近年发展综述[J]. 现代应用物理, 2024, 15:030101 doi: 10.12061/j.issn.2905-6223.2024.030101

    Qiu Mengtong, Hu Yixiang, Wu Wei, et al. Review of the development of intense pulsed radiation simulator and its technology in northwest institute of nuclear technology in the past decade[J]. Modern Applied Physics, 2024, 15: 030101 doi: 10.12061/j.issn.2905-6223.2024.030101
    [13] 周建生. 短链疏水基团改性尼龙6的吸水性研究[D]. 泉州: 华侨大学, 2018

    Zhou Jiansheng. Water absorption of short chain hydrophobically modified Nylon 6[D]. Quanzhou: Huaqiao University, 2018
    [14] 周彤. 尼龙6改性及其共混纤维制备、结构及性能研究[D]. 上海: 东华大学, 2018

    Zhou Tong. Nylon 6 modification and study on preparation, structure and properties of blended fibers[D]. Shanghai: Donghua University, 2018
    [15] 张哲, 张靖含, 王晓霞, 等. PMMA低温表面液滴凝结过程的实验研究[J]. 低温与超导, 2024, 52(1):36-42,86

    Zhang Zhe, Zhang Jinghan, Wang Xiaoxia, et al. Experimental study on condensation process of PMMA surface droplet at low temperature[J]. Cryogenics and Superconductivity, 2024, 52(1): 36-42,86
    [16] 罗祥, 赵剑豪. 有机玻璃表面的静电自组装超亲水防雾改性[J]. 功能材料, 2010, 41(12):2057-2059,2063

    Luo Xiang, Zhao Jianhao. Superhydrophilicity antifogging modification of poly(methyl methacrylate) via static electronic self-assembly on the surface[J]. Journal of Functional Materials, 2010, 41(12): 2057-2059,2063
    [17] 万方超, 许飞凡, 魏伟, 等. 交联聚苯乙烯表面CF4等离子体改性及其真空沿面闪络性能[J]. 高电压技术, 2018, 44(12):3857-3864

    Wan Fangchao, Xu Feifan, Wei Wei, et al. Surface modification of cross-linked polystyrene by CF4 plasma and its vacuum surface flashover performance[J]. High Voltage Engineering, 2018, 44(12): 3857-3864
    [18] 刘谦, 李新梅, 杨现臣, 等. 超疏水PS/PAN复合纳米纤维的制备及性能研究[J]. 化工新型材料, 2021, 49(10):124-127,132

    Liu Qian, Li Xinmei, Yang Xianchen, et al. Preparation and property of superhydrophobic PS/PAN composite nanofiber[J]. New Chemical Materials, 2021, 49(10): 124-127,132
    [19] 马正禄. 高密度聚乙烯/凹凸棒土复合材料的制备与性能研究[D]. 自贡: 四川轻化工大学, 2022

    Ma Zhenglu. Preparation and performance of high-density polyethylene/attapulgite nanocomposites[D]. Zigong: Sichuan University of Science & Engineering, 2022
    [20] 余旺旺. 高密度聚乙烯基本塑复合材料防腐性能的研究[D]. 南京: 南京林业大学, 2011

    Yu Wangwang. Study on anti-corrosion properties of high density polyethylene based wood-plastic composites[D]. Nanjing: Nanjing Forestry University, 2011
    [21] 李元, 孙滢, 刘毅, 等. 液电效应及电火花震源的研究现状与展望[J]. 高电压技术, 2021, 47(3):753-765

    Li Yuan, Sun Ying, Liu Yi, et al. Electrohydraulic effect and sparker source: current situation and prospects[J]. High Voltage Engineering, 2021, 47(3): 753-765
    [22] 孙向东. MC尼龙的合成、改性研究[D]. 沈阳: 东北大学, 2006

    Sun Xiangdong. Synthesis and modification of monomer casting Nylon[D]. Shenyang: Northeastern University, 2006
    [23] 王慧杰, 张宜鹏, 廖辉荣, 等. 化学交联高密度聚乙烯的结构与性能[J]. 塑料, 2024, 53(5):28-32,37

    Wang Huijie, Zhang Yipeng, Liao Huirong, et al. Structure and properties of chemically crosslinked high-density polyethylene[J]. Plastics, 2024, 53(5): 28-32,37
    [24] 吴飞. 交联聚苯乙烯及其玻纤增强复合材料的制备及性能研究[D]. 武汉: 武汉理工大学, 2010

    Wu Fei. Preparation and properties study on cross-linked polystyrene and its glass fiber reinforced composites[D]. Wuhan: Wuhan University of Technology, 2010
    [25] 伍雪强. 有机玻璃的增韧改性研究[D]. 苏州: 苏州大学, 2009

    Wu Xueqiang. Research on toughening modification of PMMA[D]. Suzhou: Soochow University, 2009
    [26] Martin J C. Nanosecond pulse techniques[J]. Proceedings of the IEEE, 1992, 80(6): 934-945. doi: 10.1109/5.149456
    [27] 胡多, 任成燕, 孔飞, 等. 表面粗糙度对聚合物材料真空沿面闪络特性的影响[J]. 电工技术学报, 2019, 34(16):3512-3521

    Hu Duo, Ren Chengyan, Kong Fei, et al. Influence of the roughness on surface flashover of polymer materials in vacuum[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3512-3521
    [28] Jones H M, Kunhardt E E. Development of pulsed dielectric breakdown in liquids[J]. Journal of Physics D: Applied Physics, 1995, 28(1): 178-188. doi: 10.1088/0022-3727/28/1/025
    [29] Pillai A S, Hackam R. Surface flashover of solid dielectric in vacuum[J]. Journal of Applied Physics, 1982, 53(4): 2983-2987. doi: 10.1063/1.331037
    [30] 丛培天. 串级多间隙气体开关性能研究及优化[D]. 西北核技术研究所, 2012

    Cong Peitian. Research and optimization of the performance of cascaded multi-gap gas switches[D]. Northwest Institute of Nuclear Technology, 2012
  • 加载中
图(15)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  37
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-28
  • 修回日期:  2025-06-10
  • 录用日期:  2025-06-10
  • 网络出版日期:  2025-07-30
  • 刊出日期:  2025-07-26

目录

    /

    返回文章
    返回