Study on Low-Level Control of the Buncher in the Hard X-ray Free Electron Laser Facility
-
摘要: 硬X射线自由电子激光装置(SHINE)中常温L波段聚束器在电子束团进行压缩过程中发挥了关键作用,有效提升了束流品质,满足了SHINE对低发射度和低能散的注入要求。由于聚束器采用了2-cell的设计,特研制了一套数字化低电平控制系统。该系统基于FPGA板卡和上下变频板卡的架构,采用I/Q解调技术,集成了幅度相位反馈、频率调谐及场平坦度多电机协调控制功能。在10 kW连续波运行中,聚束器腔压的幅度稳定度(peak-to-peak)由开环的±0.17%提高到闭环的±0.03%,相位稳定度(peak-to-peak)控制在±0.05°以内,场平坦度保持在±2%以内,满足了设计指标要求。此外,还提出了一种基于模拟数字转换(ADC)采集的射频信号功率校准方法,通过与功率计对比实测误差在±2%以内,验证了该方法的可行性,为射频功率标定提供了一种可选方案。Abstract:
Background In the Hard X-ray Free Electron Laser (SHINE), the normal-conducting L-band buncher plays a critical role in the compression of electron bunches, significantly improving beam quality meeting the stringent injection requirements of low emittance and low energy spread.Purpose Due to its 2-cell structure, a dedicated digital low-level RF control system was developed.Methods This system, based on an architecture comprising FPGA and RF front-end boards, and adopts I/Q demodulation techniques. It incorporates amplitude and phase feedback, frequency tuning, and multi-motor coordinated for field flatness control.Results During 10 kW continuous-wave (CW) operation the amplitude stability (peak-to-peak) improved from ±0.17% in open-loop to within ±0.03% under closed-loop, while the phase stability (peak-to-peak) was controlled within ±0.05°, and field flatness was maintained within ±2%, fully meeting design specifications. Additionally, a radio-frequency (RF) power calibration method based on ADC acquisition of LLRF was proposed.Conclusions Experimental results showed calibration error within ±2% when compared with power meter, demonstrating this method’s reliability as an alternative solution for RF power calibration. -
表 1 SHINE常温L波段聚束器系统设备功能简介
Table 1. Equipment function of SHINE buncher
equipment function buncher compressed electron beam, reduce the beam emittance and energy spread LLRF control the RF field SSA amplifier the RF power motor driver tuning the resonance and field flatness circulator isolate the RF power from the buncher 表 2 SHINE注入器聚束器低电平技术指标
Table 2. Parameters of LLRF for SHINE buncher
parameter operation mode Frequency/MHz quantity of feeding amplitude stability(RMS)/(%) phase stability(RMS)/(°) value continuous wave 1300 single 0.02 0.02 表 3 SHINE频调环路失谐角与电机动作解析
Table 3. Analysis the relationship between the tuning and status of motor in SHINE
Area Analysis (a1) motor is moving (a2) motor is moving (b) motor is stopping (c1) 1、motor is moving when changing from Th2 towards 0 within c1
2、 motor is stopping when changing from 0 to Th2 within c1(c2) 1、motor is moving when changing from -Th2 towards 0 within c2
2、motor is stopping when changing from 0 to -Th2 within c2表 4 聚束器幅度稳定性测试结果(peak-to-peak)
Table 4. Results of normalized amplitude stability for buncher at SHINE(peak-to-peak)
parameter open-loop closed-loop max 0.6395 0.6450 min 0.6384 0.6446 mean 0.6389 0.6448 amplitude stability ≤±0.17% ≤±0.03% amplitude (RMS) 0.019% 0.00517 %表 5 测试功率比较
Table 5. Comparison list of test power
PPower-meter/W PSSA/W error ratio1/% PADC/W error ratio2/% 2001 1766 −11.74 2033 1.6 4004 3721 −7.07 3989 −0.4 5995 5722 −4.55 5990 −0.08 9023 8764 −2.87 9152 1.4 11398 10205 −10.47 11783 3.4 -
[1] Huang G, Campbell K, Doolittle L, et al. LCLS-II gun/buncher LLRF system design[C]//9th International Particle Accelerator Conference. 2018: 2258-2261. [2] Ha G, Kim K J, Power J G, et al. Bunch shaping in electron linear accelerators[J]. Reviews of Modern Physics, 2022, 94: 025006. doi: 10.1103/RevModPhys.94.025006 [3] Schmidt C, Ayvazyan V, Branlard J, et al. High level software structure for the European XFEL LLRF system[C]//Proceedings of 15th International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS 2015). 2015: 757-760. [4] Ohshima T, Ego H, Fukui T, et al. Development of a new LLRF system based on MicroTCA. 4 for the SPring-8 storage ring[C]// Proceedings of the 8th International Particle Accelerator Conference. 2017: 3996-3999. [5] Czuba K, Jezynski T, Hoffmann M, et al. RF backplane for MTCA. 4-based LLRF control system[J]. IEEE Transactions on Nuclear Science, 2013, 60(5): 3615-3619. doi: 10.1109/TNS.2013.2278380 [6] Zhao Yubin, Yin Chengke, Zhang Tongxuan, et al. Digital prototype of LLRF system for SSRF[J]. Chinese Physics C, 2008, 32(9): 758-760. doi: 10.1088/1674-1137/32/9/015 [7] Zhang Zhigang, Zhao Yubin, Xu Kai, et al. Digital LLRF controller for SSRF booster RF system upgrade[J]. Nuclear Science and Techniques, 2015, 26: 030106. [8] 张志刚, 赵玉彬, 徐凯, 等. 上海光源超导三次谐波腔低电平研制[J]. 核技术, 2022, 45:120101 doi: 10.11889/j.0253-3219.2022.hjs.45.120101Zhang Zhigang, Zhao Yubin, Xu Kai, et al. Low level radio frequency controller for superconducting third harmonic cavity at SSRF[J]. Nuclear Techniques, 2022, 45: 120101 doi: 10.11889/j.0253-3219.2022.hjs.45.120101 [9] 张志刚, 赵玉彬, 徐凯, 等. 基于FPGA的多cell腔的场平坦度控制[J]. 核技术, 2017, 40:020101 doi: 10.11889/j.0253-3219.2017.hjs.40.020101Zhang Zhigang, Zhao Yubin, Xu Kai, et al. Control of field flatness based on FPGA for multi-cell cavity[J]. Nuclear Techniques, 2017, 40: 020101 doi: 10.11889/j.0253-3219.2017.hjs.40.020101 [10] 张俊强, 俞路阳, 殷重先, 等. 次谐波聚束器相位控制的算法改进[J]. 强激光与粒子束, 2011, 23(8):2179-2182 doi: 10.3788/HPLPB20112308.2179Zhang Junqiang, Yu Luyang, Yin Chongxian, et al. Algorithm improvement for phase control of subharmonic buncher[J]. High Power Laser and Particle Beams, 2011, 23(8): 2179-2182 doi: 10.3788/HPLPB20112308.2179 [11] 刘熔, 赵凤利, 黄永清, 等. 次谐波聚束系统固态放大器相位特性[J]. 强激光与粒子束, 2009, 21(7):1059-1062Liu Rong, Zhao Fengli, Huang Yongqing, et al. Phase characteristics of solid-state amplifiers in sub-harmonic bunchers[J]. High Power Laser and Particle Beams, 2009, 21(7): 1059-1062 [12] 樊浩. 储存环中高次谐波腔的有关计算研究[D]. 合肥: 中国科学技术大学, 2013: 27-28Fan Hao. Calculation and research of the higher harmonic cavity in storage ring[D]. Hefei: University of Science and Technology of China, 2013: 27-28 [13] 李健, 徐新安, 慕振成, 等. 中国散裂中子源直线射频功率源系统的研制[J]. 强激光与粒子束, 2016, 28:085101 doi: 10.11884/HPLPB201628.151013Li Jian, Xu Xin’an, Mu Zhencheng, et al. Linac RF power sources development for China spallation neutron source[J]. High Power Laser and Particle Beams, 2016, 28: 085101 doi: 10.11884/HPLPB201628.151013 [14] Bellandi A, Branlard J, Diomede M, et al. Retraction notice to “Calibration of superconducting radio-frequency cavity forward and reflected channels based on stored energy dynamics” [NIMA 1062 (2024) 169172][J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024, 1067: 169733. doi: 10.1016/j.nima.2024.169733 [15] Ma Jinying, Qiu Feng, Shi Longbo, et al. Precise calibration of cavity forward and reflected signals using low-level radio-frequency system[J]. Nuclear Science and Techniques, 2022, 33: 4. doi: 10.1007/s41365-022-00985-4 [16] Xu Tianzhe, Ji Fuhao, Weathersby S, et al. Calculation of RF-induced temporal jitter in ultrafast electron diffraction[DB/OL]. arXiv preprint arXiv: 2408.00937, 2024. [17] 邵琢瑕, 张通, 董自强, 等. 太赫兹近场高通量材料物性测试装置直线加速器微波系统研制[J]. 强激光与粒子束, 2025, 37:014004 doi: 10.11884/HPLPB202537.240168Shao Zhuoxia, Zhang Tong, Dong Ziqiang, et al. Development of linear accelerator microwave system for terahertz near-field high-throughput material physical property testing system[J]. High Power Laser and Particle Beams, 2025, 37: 014004 doi: 10.11884/HPLPB202537.240168 -