留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硬X射线自由电子激光装置聚束器低电平控制研究

张志刚 杨文峰 蒋鸿儒 徐凯 黄雪芳 余悦超 武海龙 吴宏 常强 郑湘 赵玉彬

张志刚, 杨文峰, 蒋鸿儒, 等. 硬X射线自由电子激光装置聚束器低电平控制研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250106
引用本文: 张志刚, 杨文峰, 蒋鸿儒, 等. 硬X射线自由电子激光装置聚束器低电平控制研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250106
Zhang Zhigang, Yang Wenfeng, Jiang Hongru, et al. Study on Low-Level Control of the Buncher in the Hard X-ray Free Electron Laser Facility[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250106
Citation: Zhang Zhigang, Yang Wenfeng, Jiang Hongru, et al. Study on Low-Level Control of the Buncher in the Hard X-ray Free Electron Laser Facility[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250106

硬X射线自由电子激光装置聚束器低电平控制研究

doi: 10.11884/HPLPB202537.250106
基金项目: 国家大科学装置(上海硬X射线自由电子激光装置)
详细信息
    作者简介:

    张志刚,zhangzg@sari.ac.cn

    通讯作者:

    赵玉彬,zhaoyubin@sari.ac.cn

  • 中图分类号: TL506

Study on Low-Level Control of the Buncher in the Hard X-ray Free Electron Laser Facility

  • 摘要: 硬X射线自由电子激光装置(SHINE)中常温L波段聚束器在电子束团进行压缩过程中发挥了关键作用,有效提升了束流品质,满足了SHINE对低发射度和低能散的注入要求。由于聚束器采用了2-cell的设计,特研制了一套数字化低电平控制系统。该系统基于FPGA板卡和上下变频板卡的架构,采用I/Q解调技术,集成了幅度相位反馈、频率调谐及场平坦度多电机协调控制功能。在10 kW连续波运行中,聚束器腔压的幅度稳定度(peak-to-peak)由开环的±0.17%提高到闭环的±0.03%,相位稳定度(peak-to-peak)控制在±0.05°以内,场平坦度保持在±2%以内,满足了设计指标要求。此外,还提出了一种基于模拟数字转换(ADC)采集的射频信号功率校准方法,通过与功率计对比实测误差在±2%以内,验证了该方法的可行性,为射频功率标定提供了一种可选方案。
  • 图  1  SHINE 常温L波段聚束器系统框图(LLRF:低电平控制; SSA:固态功率源)

    Figure  1.  Block diagram of RF system at SHINE buncher (LLRF: low level radio frequency; SSA: solid-states amplifier)

    图  2  固态放大器等效模型

    Figure  2.  Equivalent model of solid-states amplifier

    图  3  聚束器等效电路

    Figure  3.  Equivalent circuit of buncher

    图  4  马达运动阈值关系图

    Figure  4.  Relationship between tuning thresholds and status of motor

    图  5  频调环路和场平坦度环路控制流程图

    Figure  5.  Block diagram of the tuning and field flatness loops

    图  6  腔压幅度稳定性比较((a):开环≤±0.17%;(b):闭环≤±0.03%)

    Figure  6.  Compare with normalized amplitude stability of voltage ((a): open-loop within ±0.17%; (b): closed-loop within ±0.03%)

    图  7  闭环状态下腔压相位稳定性(peak-to-peak≤±0.05o)

    Figure  7.  Phase stability in closed-loop(peak-to-peak≤±0.05o)

    图  8  场平坦度稳定性(≤±2%)

    Figure  8.  Stability of field flatness(≤±2%)

    图  9  聚束器低电平控制器外部设备标定与内部ADC功率校准框图

    Figure  9.  Block diagram of calibrating the buncher LLRF

    图  10  输入功率与ADC采集信号的幅度拟合图

    Figure  10.  Relationship between input power and ADC signal amplitude

    表  1  SHINE常温L波段聚束器系统设备功能简介

    Table  1.   Equipment function of SHINE buncher

    equipment function
    buncher compressed electron beam, reduce the beam emittance and energy spread
    LLRF control the RF field
    SSA amplifier the RF power
    motor driver tuning the resonance and field flatness
    circulator isolate the RF power from the buncher
    下载: 导出CSV

    表  2  SHINE注入器聚束器低电平技术指标

    Table  2.   Parameters of LLRF for SHINE buncher

    parameteroperation modeFrequency/MHzquantity of feedingamplitude stability(RMS)/(%)phase stability(RMS)/(°)
    valuecontinuous wave1300single0.020.02
    下载: 导出CSV

    表  3  SHINE频调环路失谐角与电机动作解析

    Table  3.   Analysis the relationship between the tuning and status of motor in SHINE

    Area Analysis
    (a1) motor is moving
    (a2) motor is moving
    (b) motor is stopping
    (c1) 1、motor is moving when changing from Th2 towards 0 within c1
    2、 motor is stopping when changing from 0 to Th2 within c1
    (c2) 1、motor is moving when changing from -Th2 towards 0 within c2
    2、motor is stopping when changing from 0 to -Th2 within c2
    下载: 导出CSV

    表  4  聚束器幅度稳定性测试结果(peak-to-peak)

    Table  4.   Results of normalized amplitude stability for buncher at SHINE(peak-to-peak)

    parameter open-loop closed-loop
    max 0.6395 0.6450
    min 0.6384 0.6446
    mean 0.6389 0.6448
    amplitude stability ≤±0.17% ≤±0.03%
    amplitude (RMS) 0.019% 0.00517%
    下载: 导出CSV

    表  5  测试功率比较

    Table  5.   Comparison list of test power

    PPower-meter/W PSSA/W error ratio1/% PADC/W error ratio2/%
    2001 1766 −11.74 2033 1.6
    4004 3721 −7.07 3989 −0.4
    5995 5722 −4.55 5990 −0.08
    9023 8764 −2.87 9152 1.4
    11398 10205 −10.47 11783 3.4
    下载: 导出CSV
  • [1] Huang G, Campbell K, Doolittle L, et al. LCLS-II gun/buncher LLRF system design[C]//9th International Particle Accelerator Conference. 2018: 2258-2261.
    [2] Ha G, Kim K J, Power J G, et al. Bunch shaping in electron linear accelerators[J]. Reviews of Modern Physics, 2022, 94: 025006. doi: 10.1103/RevModPhys.94.025006
    [3] Schmidt C, Ayvazyan V, Branlard J, et al. High level software structure for the European XFEL LLRF system[C]//Proceedings of 15th International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS 2015). 2015: 757-760.
    [4] Ohshima T, Ego H, Fukui T, et al. Development of a new LLRF system based on MicroTCA. 4 for the SPring-8 storage ring[C]// Proceedings of the 8th International Particle Accelerator Conference. 2017: 3996-3999.
    [5] Czuba K, Jezynski T, Hoffmann M, et al. RF backplane for MTCA. 4-based LLRF control system[J]. IEEE Transactions on Nuclear Science, 2013, 60(5): 3615-3619. doi: 10.1109/TNS.2013.2278380
    [6] Zhao Yubin, Yin Chengke, Zhang Tongxuan, et al. Digital prototype of LLRF system for SSRF[J]. Chinese Physics C, 2008, 32(9): 758-760. doi: 10.1088/1674-1137/32/9/015
    [7] Zhang Zhigang, Zhao Yubin, Xu Kai, et al. Digital LLRF controller for SSRF booster RF system upgrade[J]. Nuclear Science and Techniques, 2015, 26: 030106.
    [8] 张志刚, 赵玉彬, 徐凯, 等. 上海光源超导三次谐波腔低电平研制[J]. 核技术, 2022, 45:120101 doi: 10.11889/j.0253-3219.2022.hjs.45.120101

    Zhang Zhigang, Zhao Yubin, Xu Kai, et al. Low level radio frequency controller for superconducting third harmonic cavity at SSRF[J]. Nuclear Techniques, 2022, 45: 120101 doi: 10.11889/j.0253-3219.2022.hjs.45.120101
    [9] 张志刚, 赵玉彬, 徐凯, 等. 基于FPGA的多cell腔的场平坦度控制[J]. 核技术, 2017, 40:020101 doi: 10.11889/j.0253-3219.2017.hjs.40.020101

    Zhang Zhigang, Zhao Yubin, Xu Kai, et al. Control of field flatness based on FPGA for multi-cell cavity[J]. Nuclear Techniques, 2017, 40: 020101 doi: 10.11889/j.0253-3219.2017.hjs.40.020101
    [10] 张俊强, 俞路阳, 殷重先, 等. 次谐波聚束器相位控制的算法改进[J]. 强激光与粒子束, 2011, 23(8):2179-2182 doi: 10.3788/HPLPB20112308.2179

    Zhang Junqiang, Yu Luyang, Yin Chongxian, et al. Algorithm improvement for phase control of subharmonic buncher[J]. High Power Laser and Particle Beams, 2011, 23(8): 2179-2182 doi: 10.3788/HPLPB20112308.2179
    [11] 刘熔, 赵凤利, 黄永清, 等. 次谐波聚束系统固态放大器相位特性[J]. 强激光与粒子束, 2009, 21(7):1059-1062

    Liu Rong, Zhao Fengli, Huang Yongqing, et al. Phase characteristics of solid-state amplifiers in sub-harmonic bunchers[J]. High Power Laser and Particle Beams, 2009, 21(7): 1059-1062
    [12] 樊浩. 储存环中高次谐波腔的有关计算研究[D]. 合肥: 中国科学技术大学, 2013: 27-28

    Fan Hao. Calculation and research of the higher harmonic cavity in storage ring[D]. Hefei: University of Science and Technology of China, 2013: 27-28
    [13] 李健, 徐新安, 慕振成, 等. 中国散裂中子源直线射频功率源系统的研制[J]. 强激光与粒子束, 2016, 28:085101 doi: 10.11884/HPLPB201628.151013

    Li Jian, Xu Xin’an, Mu Zhencheng, et al. Linac RF power sources development for China spallation neutron source[J]. High Power Laser and Particle Beams, 2016, 28: 085101 doi: 10.11884/HPLPB201628.151013
    [14] Bellandi A, Branlard J, Diomede M, et al. Retraction notice to “Calibration of superconducting radio-frequency cavity forward and reflected channels based on stored energy dynamics” [NIMA 1062 (2024) 169172][J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024, 1067: 169733. doi: 10.1016/j.nima.2024.169733
    [15] Ma Jinying, Qiu Feng, Shi Longbo, et al. Precise calibration of cavity forward and reflected signals using low-level radio-frequency system[J]. Nuclear Science and Techniques, 2022, 33: 4. doi: 10.1007/s41365-022-00985-4
    [16] Xu Tianzhe, Ji Fuhao, Weathersby S, et al. Calculation of RF-induced temporal jitter in ultrafast electron diffraction[DB/OL]. arXiv preprint arXiv: 2408.00937, 2024.
    [17] 邵琢瑕, 张通, 董自强, 等. 太赫兹近场高通量材料物性测试装置直线加速器微波系统研制[J]. 强激光与粒子束, 2025, 37:014004 doi: 10.11884/HPLPB202537.240168

    Shao Zhuoxia, Zhang Tong, Dong Ziqiang, et al. Development of linear accelerator microwave system for terahertz near-field high-throughput material physical property testing system[J]. High Power Laser and Particle Beams, 2025, 37: 014004 doi: 10.11884/HPLPB202537.240168
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  38
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 修回日期:  2022-07-25
  • 录用日期:  2025-07-16
  • 网络出版日期:  2025-08-13

目录

    /

    返回文章
    返回