留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人机射频前端高功率微波耦合研究与防护

李延松 陈亚洲 赵敏 张晓璐 李宏飞

李延松, 陈亚洲, 赵敏, 等. 无人机射频前端高功率微波耦合研究与防护[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250120
引用本文: 李延松, 陈亚洲, 赵敏, 等. 无人机射频前端高功率微波耦合研究与防护[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250120
Li Yansong, Chen Yazhou, Zhao Min, et al. High-power microwave coupling research and protection of unmanned aerial vehicle RF front-end[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250120
Citation: Li Yansong, Chen Yazhou, Zhao Min, et al. High-power microwave coupling research and protection of unmanned aerial vehicle RF front-end[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250120

无人机射频前端高功率微波耦合研究与防护

doi: 10.11884/HPLPB202537.250120
基金项目: 国家自然科学基金项目(62301605)
详细信息
    作者简介:

    李延松,li_yansong_2018@163.com

    通讯作者:

    陈亚洲,chen_yazhou@sina.com

  • 中图分类号: TN972

High-power microwave coupling research and protection of unmanned aerial vehicle RF front-end

  • 摘要: 战场无人机的数据链射频前端容易受到高功率微波干扰和损伤而不能正常发挥工作效能。为研究无人机数据链射频前端高功率微波耦合规律与防护,建立数据链天线和射频前端电路PCB仿真模型,以不同载波频率、脉宽、极化方向和上升沿时间的高功率微波分别对数据链天线进行辐照,得到天线输出口端接负载的耦合电压波形,然后将其注入数据链射频芯片外围接收电路中,得到射频芯片引脚的耦合电压,完整模拟了高功率微波的场-路耦合过程。选用一款2.45 GHz的PIN限幅器进行电磁防护。结果表明:无人机数据链射频前端电路的Si24R1芯片引脚耦合电压幅值随着载波频率的上升出现了尖峰现象,随着极化角的增加,耦合电压出现了较大的降低,脉冲宽度和上升沿变化对耦合电压幅值影响不大。PIN限幅器在保证信号接收质量情况下能显著降低高功率微波对射频前端电路的耦合电压,提升了无人机数据链的电磁防护性能。
  • 图  1  Si24R1芯片引脚示意图及内部结构

    Figure  1.  Si24R1 chip internal structures and pins schematic diagram

    图  2  数据链天线结构和辐射参数

    Figure  2.  Datalink antenna structure and radiation parameters

    图  3  无人机射频模块电路模型

    Figure  3.  UAV datalink receiver circuit model

    图  4  高功率微波脉冲时频图

    Figure  4.  High power microwave pulse time-frequency diagram

    图  5  均匀平面波入射方向示意图

    Figure  5.  Schematic diagram of incident direction of plane wave

    图  6  高功率微波辐照数据链天线仿真模型

    Figure  6.  Plane wave irradiation datalink antenna schematic diagram

    图  7  不同载波频率下,Si24R1芯片引脚耦合电压波形

    Figure  7.  Coupling voltage of Si24R1 ports under different carrier frequencies

    图  8  不同极化方向下,Si24R1芯片引脚耦合电压波形

    Figure  8.  Coupling voltage of Si24R1 ports under different polarization angles

    图  9  不同脉冲宽度下,Si24R1芯片引脚耦合电压波形

    Figure  9.  Coupling voltage of Si24R1 ports under different pulse widths

    图  10  边沿时间变化时,Si24R1信号接收引脚耦合电压波形。

    Figure  10.  Coupling voltage of Si24R1 ports under different rising times

    图  11  PIN 限幅器针对2.45 GHz 优化的外部调谐网络

    Figure  11.  PIN limiter with external tuning networks optimized for 2.45 GHz

    图  12  SKY16602-632LF在2.45GHz 处的插入损耗和回波损耗

    Figure  12.  Insertion and return loss at 2.45 GHz of SKY16602-632LF

    图  13  CST电路仿真原理图

    Figure  13.  Schematic diagram of CST circuit simulation

    图  14  外围电路接口E1 (ANT)注入电压波形

    Figure  14.  Peripheral circuit interface E1 (ANT) injection voltage waveform

    图  15  限幅后射频芯片引脚耦合电压波形

    Figure  15.  Coupled voltage waveform of RF chip after limiting

    图  16  在2.45 GHz频点下,PIN限幅器插入损耗随输入功率变化的特性曲线

    Figure  16.  Insertion loss versus CW input power at 2.45 GHz of PIN limiter

    表  1  数据链天线尺寸

    Table  1.   Dimensions of the datalink antenna

    R1/mm R2/mm R3/mm R/mm l1/mm l2/mm
    5.0 2.6 1.13 4.8 25 28
    下载: 导出CSV
  • [1] 王瑞杰, 王得朝, 丰璐, 等. 国外无人机蜂群作战样式进展及反蜂群策略研究[J]. 现代防御技术, 2023, 51(4): 1-9 doi: 10.3969/j.issn.1009-086x.2023.04.001

    Wang Ruijie, Wang Dechao, Feng Lu, et al. Research progress and countermeasures against UAV swarm operations abroad[J]. Modern Defence Technology, 2023, 51(4): 1-9 doi: 10.3969/j.issn.1009-086x.2023.04.001
    [2] 何兴秀, 崔玉伟, 杨祖强, 等. 无人机蜂群城市防御作战运用模式研究[J]. 航空科学技术, 2025, 36(1): 75-85

    He Xingxiu, Cui Yuwei, Yang Zuqiang, et al. Research on UAV swarm application mode in urban defense combat scenarios[J]. Aeronautical Science & Technology, 2025, 36(1): 75-85
    [3] 刘振林, 杨光, 段难, 等. 高功率微波导弹对战场环境的影响及对抗技术研究[J]. 微波学报, 2020, 36(s1): 358-361

    Liu Zhenlin, Yang Guang, Duan Nan, et al. Research on the impact of CHAMP on the battlefield environment and the countermeasure technology[J]. Journal of Microwaves, 2020, 36(s1): 358-361
    [4] 谭志良, 李亚南, 宋培姣. 射频前端强电磁脉冲防护研究进展[J]. 北京理工大学学报, 2020, 40(3): 231-242

    Tan Zhiliang, Li Yanan, Song Peijiao. Relevant research on electromagnetic pulse protection of RF front-end[J]. Transactions of Beijing institute of Technology, 2020, 40(3): 231-242
    [5] 张冬晓, 陈亚洲, 程二威, 等. 无人机动态数据链路电磁辐射效应试验[J]. 太赫兹科学与电子信息学报, 2020, 18(4): 643-649 doi: 10.11805/TKYDA2019029

    Zhang Dongxiao, Chen Yazhou, Cheng Erwei, et al. Electromagnetic radiation effects on dynamic datalink of UAV[J]. Journal of Terahertz Science and Electronic Information Technology, 2020, 18(4): 643-649 doi: 10.11805/TKYDA2019029
    [6] 程二威, 王平平, 张怡, 等. 边界形变互耦混响室屏蔽效能测试技术研究[J]. 高电压技术, 2023, 49(7): 3102-3109

    Cheng Erwei, Wang Pingping, Zhang Yi, et al. Research on shielding effectiveness test technology of boundary deformation mutual coupling reverberation chamber[J]. High Voltage Engineering, 2023, 49(7): 3102-3109
    [7] 马振洋, 李慕凡, 李斌. 无人机数据链射频前端高强辐射场干扰效应研究[J]. 中国民航大学学报, 2024, 42(5): 14-21 doi: 10.3969/j.issn.1674-5590.2024.05.003

    MA Zhenyang, LI Mufan, LI Bin. Research on interference effect of high intensity radiated field in RF front-end of UAV datalink[J]. Journal of Civil Aviation University of China, 2024, 42(5): 14-21 doi: 10.3969/j.issn.1674-5590.2024.05.003
    [8] Zhang Dongxiao, Zhou Xing, Cheng Erwei, et al. Investigation on effects of HPM pulse on UAV's datalink[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(3): 829-839. doi: 10.1109/TEMC.2019.2915285
    [9] Zhang Dongxiao, Zhao Min, Cheng Erwei, et al. GPR-based EMI prediction for UAV's dynamic datalink[J]. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(1): 19-29. doi: 10.1109/TEMC.2020.3000919
    [10] Xu Tong, Chen Yazhou, Zhao Min, et al. Adaptive EMS test design method on UAV data link based on Bayesian optimization[J]. IEEE Transactions on Electromagnetic Compatibility, 2023, 65(3): 716-724. doi: 10.1109/TEMC.2023.3261879
    [11] Xu Tong, Wang Yuming, Zhang Dongxiao, et al. Prediction on EMS of UAV's data link based on SSA-optimized dual-channel CNN[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(5): 1346-1356. doi: 10.1109/TEMC.2022.3174635
    [12] Zhao Min, Chen Yazhou, Zhou Xing, et al. Investigation on falling and damage mechanisms of UAV illuminated by HPM pulses[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(5): 1412-1422. doi: 10.1109/TEMC.2022.3187017
    [13] Jia Yinsen, Tu Xinqi, Yan Wei, et al. Study on the influence of electromagnetic pulse on UAV communication link[J]. American Journal of Electrical and Electronic Engineering, 2019, 7(2): 42-48. doi: 10.12691/ajeee-7-2-4
    [14] 刘振磊, 刘卫东, 柳扬, 等. 射频前端快上升沿电磁脉冲防护电路仿真分析[J]. 安全与电磁兼容, 2024(1): 46-51 doi: 10.3969/j.issn.1005-9776.2024.01.005

    Liu Zhenlei, Liu Weidong, Liu Yang, et al. Simulation and analysis of electromagnetic pulse protection circuit for fast rising edge of RF front-end[J]. Safety & EMC, 2024(1): 46-51 doi: 10.3969/j.issn.1005-9776.2024.01.005
    [15] Duruvarajan V S, Ganesan V, Poovaragavan S S, et al. A cost effective transmitter and receiver for unmanned aerial vehicles[J]. AIP Conference Proceedings, 2023, 2831: 050002.
    [16] 宋雯静. 电子设备强电磁脉冲耦合效应场路协同仿真研究[D]. 长春: 吉林大学, 2024: 20-23

    Song Wenjing. Research on field-circuit collaborative simulation strong electromagnetic pulse coupling effect of electronic equipment[D]. Changchun: Jilin University, 2024: 20-23
    [17] Chen Xu, Zhang Xiaoxiao, Xia Lingman, et al. Design of dual remote control mini-UAV based on Si24R1 and nRF52832[C]//2022 4th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP). 2022: 1045-1048.
    [18] 金祖升, 施佳林, 李建轩, 等. 微波接收前端高功率微波效应实验研究[J]. 湖南大学学报(自然科学版), 2022, 49(4): 146-152

    Jin Zusheng, Shi Jialin, Li Jianxuan, et al. Experimental study of high power microwave effects on a microwave receiver front-end[J]. Journal of Hunan University (Natural Sciences), 2022, 49(4): 146-152
    [19] 王永胜, 李伟, 郭文卿. 强电磁环境下无人机的电磁防护技术[J]. 安全与电磁兼容, 2020(5): 95-99 doi: 10.3969/j.issn.1005-9776.2020.05.020

    Wang Yongsheng, Li Wei, Guo Wenqing. Protection technology of UAV in strong electromagnetic environment[J]. Safety & EMC, 2020(5): 95-99 doi: 10.3969/j.issn.1005-9776.2020.05.020
    [20] 赵敏, 陈亚洲, 周星, 等. 无人机机载天线高功率微波耦合响应研究[J]. 强激光与粒子束, 2024, 36: 033006 doi: 10.11884/HPLPB202436.230215

    Zhao Min, Chen Yazhou, Zhou Xing, et al. Coupling response of unmanned aerial vehicle antennas under high-power microwave radiation[J]. High Power Laser and Particle Beams, 2024, 36: 033006 doi: 10.11884/HPLPB202436.230215
    [21] 沈衍, 王玉明, 陈亚洲. 无人机载SAR高功率微波效应仿真方法[J]. 国防科技大学学报, 2024, 46(6): 131-140 doi: 10.11887/j.cn.202406014

    Shen Yan, Wang Yuming, Chen Yazhou. Simulation method of high-power microwave effect for UAV’s SAR[J]. Journal of National University of Defense Technology, 2024, 46(6): 131-140 doi: 10.11887/j.cn.202406014
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  26
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-10
  • 修回日期:  2025-08-09
  • 录用日期:  2025-08-09
  • 网络出版日期:  2025-08-11

目录

    /

    返回文章
    返回