High-power microwave coupling research and protection of unmanned aerial vehicle RF front-end
-
摘要: 战场无人机的数据链射频前端容易受到高功率微波干扰和损伤而不能正常发挥工作效能。为研究无人机数据链射频前端高功率微波耦合规律与防护,建立数据链天线和射频前端电路PCB仿真模型,以不同载波频率、脉宽、极化方向和上升沿时间的高功率微波分别对数据链天线进行辐照,得到天线输出口端接负载的耦合电压波形,然后将其注入数据链射频芯片外围接收电路中,得到射频芯片引脚的耦合电压,完整模拟了高功率微波的场-路耦合过程。选用一款2.45 GHz的PIN限幅器进行电磁防护。结果表明:无人机数据链射频前端电路的Si24R1芯片引脚耦合电压幅值随着载波频率的上升出现了尖峰现象,随着极化角的增加,耦合电压出现了较大的降低,脉冲宽度和上升沿变化对耦合电压幅值影响不大。PIN限幅器在保证信号接收质量情况下能显著降低高功率微波对射频前端电路的耦合电压,提升了无人机数据链的电磁防护性能。Abstract:
Background Unmanned aerial vehicles (UAVs), representing advanced combat capabilities in new domains, have become essential weaponry in modern warfare. The proliferation of frequency-dependent equipment and rapid advancements in counter-UAV technologies have resulted in increasingly complex electromagnetic environments. High-power microwave (HPM) radiation, characterized by high power, tunable carrier frequency, and complex coupling effects, can effectively jam or damage UAV systems. Datalinks, acting as the UAV’s ‘brain’, are particularly vulnerable to HPM interference. Consequently, research into HPM coupling mechanisms and protection methods for UAV datalink is vital for enhancing UAV resilience.Purpose This study investigates the coupling laws and protection methods of HPM radiation on the RF front-end of UAV datalinks.Methods Models of the datalink antenna and RF front-end PCB were developed using Computer Simulation Technology (CST) software. The antenna was irradiated with HPM pulses with variations in carrier frequency, pulse width, polarization direction, and rise time. The coupled voltage waveforms at the antenna output ports were analyzed. These voltages were injected into the receiver circuit model to determine the coupled voltage at the pins of the RF chip (Si24R1), thus simulating the complete HPM field-to-circuit coupling process. A 2.45 GHz PIN limiter was implemented for electromagnetic protection.Results (1) The amplitude of the coupled voltage at the Si24R1 RF chip pins exhibited spiking behavior at high carrier frequencies. (2) Coupled voltage decreased significantly with increasing polarization angle. (3) Variations in pulse width and rise time had minimal effect on coupled voltage amplitude. (4) The PIN limiter significantly reduced the coupled voltages while maintaining signal reception quality, enhancing the datalink’s electromagnetic protection.Conclusions This work quantifies HPM coupling laws on RF front-end circuits under varying parameters. Implementing PIN limiter on the RF front-end significantly attenuates electromagnetic interference, providing a validated reference for UAV electromagnetic protection. -
表 1 数据链天线尺寸
Table 1. Dimensions of the datalink antenna
R1/mm R2/mm R3/mm R/mm l1/mm l2/mm 5.0 2.6 1.13 4.8 25 28 -
[1] 王瑞杰, 王得朝, 丰璐, 等. 国外无人机蜂群作战样式进展及反蜂群策略研究[J]. 现代防御技术, 2023, 51(4): 1-9 doi: 10.3969/j.issn.1009-086x.2023.04.001Wang Ruijie, Wang Dechao, Feng Lu, et al. Research progress and countermeasures against UAV swarm operations abroad[J]. Modern Defence Technology, 2023, 51(4): 1-9 doi: 10.3969/j.issn.1009-086x.2023.04.001 [2] 何兴秀, 崔玉伟, 杨祖强, 等. 无人机蜂群城市防御作战运用模式研究[J]. 航空科学技术, 2025, 36(1): 75-85He Xingxiu, Cui Yuwei, Yang Zuqiang, et al. Research on UAV swarm application mode in urban defense combat scenarios[J]. Aeronautical Science & Technology, 2025, 36(1): 75-85 [3] 刘振林, 杨光, 段难, 等. 高功率微波导弹对战场环境的影响及对抗技术研究[J]. 微波学报, 2020, 36(s1): 358-361Liu Zhenlin, Yang Guang, Duan Nan, et al. Research on the impact of CHAMP on the battlefield environment and the countermeasure technology[J]. Journal of Microwaves, 2020, 36(s1): 358-361 [4] 谭志良, 李亚南, 宋培姣. 射频前端强电磁脉冲防护研究进展[J]. 北京理工大学学报, 2020, 40(3): 231-242Tan Zhiliang, Li Yanan, Song Peijiao. Relevant research on electromagnetic pulse protection of RF front-end[J]. Transactions of Beijing institute of Technology, 2020, 40(3): 231-242 [5] 张冬晓, 陈亚洲, 程二威, 等. 无人机动态数据链路电磁辐射效应试验[J]. 太赫兹科学与电子信息学报, 2020, 18(4): 643-649 doi: 10.11805/TKYDA2019029Zhang Dongxiao, Chen Yazhou, Cheng Erwei, et al. Electromagnetic radiation effects on dynamic datalink of UAV[J]. Journal of Terahertz Science and Electronic Information Technology, 2020, 18(4): 643-649 doi: 10.11805/TKYDA2019029 [6] 程二威, 王平平, 张怡, 等. 边界形变互耦混响室屏蔽效能测试技术研究[J]. 高电压技术, 2023, 49(7): 3102-3109Cheng Erwei, Wang Pingping, Zhang Yi, et al. Research on shielding effectiveness test technology of boundary deformation mutual coupling reverberation chamber[J]. High Voltage Engineering, 2023, 49(7): 3102-3109 [7] 马振洋, 李慕凡, 李斌. 无人机数据链射频前端高强辐射场干扰效应研究[J]. 中国民航大学学报, 2024, 42(5): 14-21 doi: 10.3969/j.issn.1674-5590.2024.05.003MA Zhenyang, LI Mufan, LI Bin. Research on interference effect of high intensity radiated field in RF front-end of UAV datalink[J]. Journal of Civil Aviation University of China, 2024, 42(5): 14-21 doi: 10.3969/j.issn.1674-5590.2024.05.003 [8] Zhang Dongxiao, Zhou Xing, Cheng Erwei, et al. Investigation on effects of HPM pulse on UAV's datalink[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(3): 829-839. doi: 10.1109/TEMC.2019.2915285 [9] Zhang Dongxiao, Zhao Min, Cheng Erwei, et al. GPR-based EMI prediction for UAV's dynamic datalink[J]. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(1): 19-29. doi: 10.1109/TEMC.2020.3000919 [10] Xu Tong, Chen Yazhou, Zhao Min, et al. Adaptive EMS test design method on UAV data link based on Bayesian optimization[J]. IEEE Transactions on Electromagnetic Compatibility, 2023, 65(3): 716-724. doi: 10.1109/TEMC.2023.3261879 [11] Xu Tong, Wang Yuming, Zhang Dongxiao, et al. Prediction on EMS of UAV's data link based on SSA-optimized dual-channel CNN[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(5): 1346-1356. doi: 10.1109/TEMC.2022.3174635 [12] Zhao Min, Chen Yazhou, Zhou Xing, et al. Investigation on falling and damage mechanisms of UAV illuminated by HPM pulses[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(5): 1412-1422. doi: 10.1109/TEMC.2022.3187017 [13] Jia Yinsen, Tu Xinqi, Yan Wei, et al. Study on the influence of electromagnetic pulse on UAV communication link[J]. American Journal of Electrical and Electronic Engineering, 2019, 7(2): 42-48. doi: 10.12691/ajeee-7-2-4 [14] 刘振磊, 刘卫东, 柳扬, 等. 射频前端快上升沿电磁脉冲防护电路仿真分析[J]. 安全与电磁兼容, 2024(1): 46-51 doi: 10.3969/j.issn.1005-9776.2024.01.005Liu Zhenlei, Liu Weidong, Liu Yang, et al. Simulation and analysis of electromagnetic pulse protection circuit for fast rising edge of RF front-end[J]. Safety & EMC, 2024(1): 46-51 doi: 10.3969/j.issn.1005-9776.2024.01.005 [15] Duruvarajan V S, Ganesan V, Poovaragavan S S, et al. A cost effective transmitter and receiver for unmanned aerial vehicles[J]. AIP Conference Proceedings, 2023, 2831: 050002. [16] 宋雯静. 电子设备强电磁脉冲耦合效应场路协同仿真研究[D]. 长春: 吉林大学, 2024: 20-23Song Wenjing. Research on field-circuit collaborative simulation strong electromagnetic pulse coupling effect of electronic equipment[D]. Changchun: Jilin University, 2024: 20-23 [17] Chen Xu, Zhang Xiaoxiao, Xia Lingman, et al. Design of dual remote control mini-UAV based on Si24R1 and nRF52832[C]//2022 4th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP). 2022: 1045-1048. [18] 金祖升, 施佳林, 李建轩, 等. 微波接收前端高功率微波效应实验研究[J]. 湖南大学学报(自然科学版), 2022, 49(4): 146-152Jin Zusheng, Shi Jialin, Li Jianxuan, et al. Experimental study of high power microwave effects on a microwave receiver front-end[J]. Journal of Hunan University (Natural Sciences), 2022, 49(4): 146-152 [19] 王永胜, 李伟, 郭文卿. 强电磁环境下无人机的电磁防护技术[J]. 安全与电磁兼容, 2020(5): 95-99 doi: 10.3969/j.issn.1005-9776.2020.05.020Wang Yongsheng, Li Wei, Guo Wenqing. Protection technology of UAV in strong electromagnetic environment[J]. Safety & EMC, 2020(5): 95-99 doi: 10.3969/j.issn.1005-9776.2020.05.020 [20] 赵敏, 陈亚洲, 周星, 等. 无人机机载天线高功率微波耦合响应研究[J]. 强激光与粒子束, 2024, 36: 033006 doi: 10.11884/HPLPB202436.230215Zhao Min, Chen Yazhou, Zhou Xing, et al. Coupling response of unmanned aerial vehicle antennas under high-power microwave radiation[J]. High Power Laser and Particle Beams, 2024, 36: 033006 doi: 10.11884/HPLPB202436.230215 [21] 沈衍, 王玉明, 陈亚洲. 无人机载SAR高功率微波效应仿真方法[J]. 国防科技大学学报, 2024, 46(6): 131-140 doi: 10.11887/j.cn.202406014Shen Yan, Wang Yuming, Chen Yazhou. Simulation method of high-power microwave effect for UAV’s SAR[J]. Journal of National University of Defense Technology, 2024, 46(6): 131-140 doi: 10.11887/j.cn.202406014 -