留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

体结构4H-SiC光电导开关光电转换效率研究

李飞 黄嘉 刘京亮 侯钧杰 陈湘锦

李飞, 黄嘉, 刘京亮, 等. 体结构4H-SiC光电导开关光电转换效率研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250131
引用本文: 李飞, 黄嘉, 刘京亮, 等. 体结构4H-SiC光电导开关光电转换效率研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250131
Li Fei, Huang Jia, Liu Jingliang, et al. Research on the photoelectric conversion efficiency of vertical 4H-SiC photoconductive semiconductor switches[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250131
Citation: Li Fei, Huang Jia, Liu Jingliang, et al. Research on the photoelectric conversion efficiency of vertical 4H-SiC photoconductive semiconductor switches[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250131

体结构4H-SiC光电导开关光电转换效率研究

doi: 10.11884/HPLPB202537.250131
详细信息
    作者简介:

    李 飞,lifei@cetc13.cn

    通讯作者:

    黄 嘉,1244930492@qq.com

  • 中图分类号: TN36

Research on the photoelectric conversion efficiency of vertical 4H-SiC photoconductive semiconductor switches

  • 摘要: 随着固态化、模块化、小型化脉冲功率系统的需求不断加深,宽禁带半导体光电导开关(PCSS)由于高功率和快响应等特点引起了广泛的关注。基于高纯半绝缘(HPSI)碳化硅(SiC)衬底,研制了体结构SiC PCSS。在此基础上,提出了一种基于氟化镁和二氧化钛的高反射镜SiC光电导开关封装结构,有效地提高了光电导开关的光能利用率,搭建了基于新封装结构高纯SiC光电导开关的亚纳秒短脉冲产生电路,优化了脉冲形成线与光电导开关的连接方式,设计了开槽型脉冲形成线结构,减小了电路的寄生电感,缩短了电路的响应时间。采用新封装结构和脉冲形成线,在偏置电压为10 kV、激光波长为532 nm、激光脉冲半高宽为500 ps、激光脉冲能量为90 μJ和负载为50 Ω的工作条件下,实验获得了电压幅值为7.6 kV的亚纳秒短脉冲,脉冲波形的上升沿和半高宽分别为620 ps和2.2 ns,对应的输出峰值功率为1.1 MW,系统的光电功率增益达到7.7 dB。
  • 图  1  封装器件与封装结构内部剖面图

    Figure  1.  Packaged PCSS and cross-sectional view of package structure

    图  2  光电导开关通态实验测试电路与激光脉冲波形

    Figure  2.  Test circuit of PCSS and the pulse of laser

    图  3  输出电压波形图及输出电压幅值与偏置电压关系

    Figure  3.  Peak output voltage with bais voltage and the waveform of output voltage

    图  4  高反射镜的反射率和输出电压幅值与光电转换效率随偏置电压的关系

    Figure  4.  Reflectivity and the ratio of peak output voltage and the photoelectric conversion efficiency

    图  5  两种脉冲形成线结构及对应的S参数对比

    Figure  5.  Two FPL structures and S parameters

    图  6  CST中的测试电路与PFL1和 PFL2下峰值输出电压对比

    Figure  6.  The test circuit in CST and peak ouuput voltage with PFL1 and PFL2

    图  7  输出电压幅值与光电转换效率比值和输出电压波形

    Figure  7.  The ratio of peak output voltage and the photoelectric conversion efficiency and waveform of output voltage

    图  8  SiC光电导开关的损伤形貌特性

    Figure  8.  Damage appearance traits of SiC PCSS

    表  1  SiC光电导开关导通电阻对比

    Table  1.   Comparison of resistor of SiC PCSS

    No. material type Elaser/mJ Plaser/MV Wavelength/nm Ubias/kV RPCSS works
    1 HPSI 4H-SiC 0.09 0.18 532 1 4.2 this work
    2 VCSI 4H-SiC 25 2.5 532 2 7.5 Ref. [18]
    3 VCSI 4H-SiC 31.8 2 532 2 5.6 Ref. [16]
    4 VCSI 4H-SiC 13 1.6 532 0.25 2 Ref. [19]
    5 HPSI 4H-SiC 4 1.1 532 0.4 2.6 Ref. [20]
    下载: 导出CSV
  • [1] Wang Langning, Jia Yongsheng, Liu Jinliang. Photoconductive semiconductor switch-based triggering with 1 ns jitter for trigatron[J]. Matter and Radiation at Extremes, 2018, 3(5): 256-260. doi: 10.1016/j.mre.2017.12.006
    [2] Sullivan J S, Stanley J R. Wide bandgap extrinsic photoconductive switches[J]. IEEE Transactions on Plasma Science, 2008, 36(5): 2528-2532. doi: 10.1109/TPS.2008.2002147
    [3] Kidera S, Sakamoto T, Sato T. Accurate UWB radar three-dimensional imaging algorithm for a complex boundary without range point connections[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4): 1993-2004. doi: 10.1109/TGRS.2009.2036909
    [4] Aggrawal H, Chen Peiyu, Assefzadeh M M, et al. Gone in a picosecond: techniques for the generation and detection of picosecond pulses and their applications[J]. IEEE Microwave Magazine, 2016, 17(12): 24-38. doi: 10.1109/MMM.2016.2608764
    [5] Danworaphong S, Tomoda M, Matsumoto Y, et al. Three-dimensional imaging of biological cells with picosecond ultrasonics[J]. Applied Physics Letters, 2015, 106: 163701. doi: 10.1063/1.4918275
    [6] 袁建强, 谢卫平, 周良骥, 等. 光导开关研究进展及其在脉冲功率技术中的应用[J]. 强激光与粒子束, 2008, 20(1): 171-176

    Yuan Jianqiang, Xie Weiping, Zhou Liangji, et al. Developments and applications of photoconductive semiconductor switches in pulsed power technology[J]. High Power Laser and Particle Beams, 2008, 20(1): 171-176
    [7] 刘锡三. 强流带电粒子束及其应用[M]. 北京: 国防工业出版社, 2007

    Liu Xisan. Intense particle beams and its applications[M]. Beijing: National Defense Industry Press, 2007
    [8] Sullivan J S. Wide bandgap extrinsic photoconductive switches[D]. Livermore: Lawrence Livermore National Lab. , 2013.
    [9] Zutavern F J, Loubriel G M, Helgeson W D, et al. High-gain GaAs photoconductive semiconductor switches (PCSS): device lifetime, high-current testing, optical pulse generators[C]//Proceedings of SPIE 2343, Optically Activated Switching IV. 1995: 180-186.
    [10] Xu Ming, Dong Hangtian, Liu Chun, et al. Investigation of an opposed-contact GaAs photoconductive semiconductor switch at 1-kHz excitation[J]. IEEE Transactions on Electron Devices, 2021, 68(5): 2355-2359. doi: 10.1109/TED.2021.3066094
    [11] Welsch M, Singh A, Winnerl S, et al. High-bias-field operation of GaAs photoconductive terahertz emitters[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2021, 42(5): 537-546. doi: 10.1007/s10762-021-00776-9
    [12] Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 3rd ed. Boca Raton: CRC Press, 2015.
    [13] Lee C H. Microwave photonics[M]. 2nd ed. Boca Raton: CRC Press, 2013.
    [14] 肖龙飞, 徐现刚. 宽禁带碳化硅单晶衬底及器件研究进展[J]. 强激光与粒子束, 2019, 31: 040003 doi: 10.11884/HPLPB201931.190043

    Xiao Longfei, Xu Xiangang. Recent development of wide bandgap semiconductor SiC substrates and device[J]. High Power Laser and Particle Beams, 2019, 31: 040003 doi: 10.11884/HPLPB201931.190043
    [15] Jia Huang; Long Hu; Zhenzhen Ma, et al. Study on Photoelectric Efficiency and Failure Mechanism of High Purity 4H-SiC PCSS[J]. IEEE Transactions on Electron Devices., 2023, 70(11): 5762-5768. doi: 10.1109/TED.2023.3318550
    [16] Wu Qilin, Xun Tao, Zhao Yuxin, et al. The test of a high-power, semi-insulating, linear-mode, vertical 6H-SiC PCSS[J]. IEEE Transactions on Electron Devices, 2019, 66(4): 1837-1842. doi: 10.1109/TED.2019.2901065
    [17] He Xuan, Zhang Bin, Liu Shuailin, et al. High-power linear-polarization burst-mode all-fibre laser and generation of frequency-adjustable microwave signal[J]. High Power Laser Science and Engineering, 2021, 9: e13. doi: 10.1017/hpl.2021.11
    [18] Cao Penghui, Huang Wei, Guo Hui, et al. Performance of a vertical 4H-SiC photoconductive switch with AZO transparent conductive window and silver mirror reflector[J]. IEEE Transactions on Electron Devices, 2018, 65(5): 2047-2051. doi: 10.1109/TED.2018.2815634
    [19] Sullivan J S, Stanley J R. 6H-SiC photoconductive switches triggered at below bandgap wavelengths[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(4): 980-985. doi: 10.1109/TDEI.2007.4286537
    [20] Choi P H, Kim Y P, Park S, et al. High-temperature annealing of high purity semi-insulating 4H-SiC and its effect on the performance of a photoconductive semiconductor switch[J]. IEEE Electron Device Letters, 2023, 44(7): 1168-1171. doi: 10.1109/LED.2023.3277846
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  45
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-14
  • 修回日期:  2025-07-08
  • 录用日期:  2025-07-22
  • 网络出版日期:  2025-07-25

目录

    /

    返回文章
    返回