留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轨道炮引信电路不同布置方式的电磁特性仿真计算

孙诚诚 郭晋 弯港 田珂 刘占恒 尹冬梅

孙诚诚, 郭晋, 弯港, 等. 轨道炮引信电路不同布置方式的电磁特性仿真计算[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250143
引用本文: 孙诚诚, 郭晋, 弯港, 等. 轨道炮引信电路不同布置方式的电磁特性仿真计算[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250143
Sun Chengcheng, Guo Jin, Wan Gang, et al. Simulation on electromagnetic characteristics of different layout methods of railgun ammunition fuze circuit components[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250143
Citation: Sun Chengcheng, Guo Jin, Wan Gang, et al. Simulation on electromagnetic characteristics of different layout methods of railgun ammunition fuze circuit components[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250143

轨道炮引信电路不同布置方式的电磁特性仿真计算

doi: 10.11884/HPLPB202537.250143
基金项目: 国家级国防重点预先研究项目(9090101030101)
详细信息
    作者简介:

    孙诚诚,002sc0603@sina.com

  • 中图分类号: TM153;TJ430

Simulation on electromagnetic characteristics of different layout methods of railgun ammunition fuze circuit components

  • 摘要: 为了优化电磁炮引信电路部件的排布方式,实现减小电磁屏蔽壳体尺寸及重量,针对电磁轨道炮发射的弹药引信电路部件所受电磁场特征,对引信电路模块在引信中的垂直于弹轴发射方向和平行于弹轴发射方向两种典型布置方式进行了电磁特性仿真计算,分别得到引信电路模块上的磁场分布情况、感应电流、电流体积力密度和感应电动势,经对比分析计算结果,给出用于电磁轨道炮发射弹药引信电路部件的优化设计思路。
  • 图  1  电磁轨道炮三维准稳态电磁场的仿真模型

    Figure  1.  The electromagnetic field simulation model of railgun

    图  2  加载的电流曲线

    Figure  2.  Load circuit curve

    图  3  加入引信电路模块的电磁轨道炮三维准稳态电磁场的仿真模型

    Figure  3.  Electromagnetic field simulation model of the railgun with the fuze circuit module

    图  4  引信电路模块垂直于弹轴方向布置时的磁感应强度分布

    Figure  4.  Magnetic induction intensity when the fuse circuit is arranged vertically

    图  5  引信电路模块平行于弹轴方向布置时的磁感应强度分布

    Figure  5.  Magnetic induction intensity when the fuze circuit is arranged parallelly

    图  6  引信电路模块上的感应涡电流仿真模型

    Figure  6.  Simulation model of the induced eddy current on the fuze circuit

    图  7  引信电路模块垂直于弹轴发射方向布置时的感应电流矢量分布

    Figure  7.  The distribution of induced current when the fuze circuit is arranged vertically

    图  8  引信电路模块平行于弹轴发射方向布置时的感应电流矢量分布

    Figure  8.  The distribution of induced current when the fuze circuit is arranged vertically

    图  9  引信电路模块垂直布置时的电磁体积力密度的矢量分布

    Figure  9.  The electromagnetic volumetric force density distribution when the fuze circuit is arranged parallelly

    图  10  引信电路模块水平布置时的电磁体积力密度的矢量分布

    Figure  10.  The electromagnetic volumetric force density distribution when the fuze circuit is arranged parallelly

    图  11  截面的选取

    Figure  11.  Selection of cross-section

    图  12  引信电路模块垂直布置时,所取非闭合回路感应电压变化

    Figure  12.  The change in the non-closed loop induced voltage measured when the fuze circuit is arranged vertically

    图  13  引信电路模块平行于弹轴发射方向时,所取非闭合回路感应电压变化

    Figure  13.  The change in the non-closed loop induced voltage measured when the fuze circuit is arranged parallelly

  • [1] 吕庆敖, 雷彬, 李治源, 等. 电磁轨道炮军事应用综述[J]. 火炮发射与控制学报, 2009, 30(1): 92-96 doi: 10.3969/j.issn.1673-6524.2009.01.023

    Lü Qing’ao, Lei Bin, Li Zhiyuan, et al. Summary of electromagnetic railgun military application[J]. Journal of Gun Launch & Control, 2009, 30(1): 92-96 doi: 10.3969/j.issn.1673-6524.2009.01.023
    [2] 《新概念武器》编委会. 新概念武器[M]. 北京: 航空工业出版社, 2009: 3-78

    Editorial Board of New Concept Weapon. New concept weapon[M]. Beijing: Aviation Industry Press, 2009: 3-78
    [3] 中国人民解放军总装备部军事训练教材编辑工作委员会. 军事技术概论[M]. 北京: 国防工业出版社, 2006: 333-350

    Editorial Committee of Military Training Textbooks of the General Armament Department of the Chinese People's Liberation Army. Introduction to military technology[M]. Beijing: National Defense Industry Press, 2006: 333-350
    [4] McNab I R, Beach F C. Naval railguns[J]. IEEE Transactions on Magnetics, 2007, 43(1): 463-468. doi: 10.1109/TMAG.2006.887446
    [5] 常馨月, 于歆杰, 刘旭堃. 一种实现电枢出膛速度控制的电磁轨道炮脉冲电源触发策略[J]. 电工技术学报, 2018, 33(10): 2261-2267

    Chang Xinyue, Yu Xinjie, Liu Xukun. A velocity-controlling triggering strategy of capacitive pulsed power supply electromagnetic railgun system[J]. Transactions of China Electrotechnical Society, 2018, 33(10): 2261-2267
    [6] 李阳, 秦涛, 朱捷, 等. 电磁轨道炮发展趋势及其关键控制技术[J]. 现代防御技术, 2019, 47(4): 19-23

    Li Yang, Qin Tao, Zhu Jie, et al. Development trend and key control technology of electromagnetic rail gun[J]. Modern Defence Technology, 2019, 47(4): 19-23
    [7] 周媛, 李敏堂, 王菁华. 美国电磁轨道发射技术现状及特点分析[J]. 火力与指挥控制, 2010, 35(9): 1-4 doi: 10.3969/j.issn.1002-0640.2010.09.001

    Zhou Yuan, Li Mintang, Wang Jinghua. Analysis on present state and characteristics of the U. S. electromagnetic rail launch technology[J]. Fire Control & Command Control, 2010, 35(9): 1-4 doi: 10.3969/j.issn.1002-0640.2010.09.001
    [8] 张世英, 裴桂艳, 张俊. 美国海军电磁轨道炮研发计划评析[J]. 现代舰船, 2011(9): 46-49

    Zhang Shiying, Pei Guiyan, Zhang Jun. Analysis of American navy electromagnetic rail gun search plan[J]. Modern Ships, 2011(9): 46-49
    [9] 杨宇鑫. 电磁发射环境下弹载机电系统仿真、设计与试验研究[D]. 南京: 南京理工大学, 2022

    Yang Yuxin. Simulation of electromagnetic launching environment, design and test for projectile-borne electromechanical systems[D]. Nanjing: Nanjing University of Science & Technology, 2022
    [10] 王航宇, 卢发兴, 许俊飞, 等. 舰载电磁轨道炮作战使用问题的思考[J]. 海军工程大学学报, 2016, 28(3): 1-6

    Wang Hangyu, Lu Faxing, Xu Junfei, et al. Application of shipborne electromagnetic rail gun in operation[J]. Journal of Naval University of Engineering, 2016, 28(3): 1-6
    [11] 汤铃铃. 电磁轨道炮弹引信所处强磁场环境分析、屏蔽及利用[D]. 南京: 南京理工大学, 2014

    Tang Lingling. Analysis of electromagnetic railgun projectile fuze’s high magnetic field environment and its shield design and utilization[D]. Nanjing: Nanjing University of Science & Technology, 2014
    [12] Ciolini R, Schneider M, Tellini B. The use of electronic components in railgun projectiles[J]. IEEE Transactions on Magnetics, 2009, 45(1): 578-583. doi: 10.1109/TMAG.2008.2008431
    [13] 曹根荣, 乔志明, 梁春燕, 等. 轨道炮发射过程中电火工品的可靠性评估[J]. 火炮发射与控制学报, 2024, 45(2): 78-84,92

    Cao Genrong, Qiao Zhiming, Liang Chunyan, et al. Reliability evaluation of the electric explosive device during the railgun’s launching process[J]. Journal of Gun Launch & Control, 2024, 45(2): 78-84,92
    [14] 罗会彬, 梅新华. 强磁场对电磁发射弹药引信的危害及防护[J]. 数字海洋与水下攻防, 2021, 4(1): 58-62

    Luo Huibin, Mei Xinhua. Hazards and protection to electromagnetic-launched ammunition fuze under high magnetic field environment[J]. Digital Ocean & Underwater Warfare, 2021, 4(1): 58-62
    [15] 廖桥生. 电磁轨道炮膛内强磁场屏蔽与磁保险引信样机设计[D]. 南京: 南京理工大学, 2016

    Liao Qiaosheng. Design of a prototype for strong magnetic field shielding and magnetic safety fuze in the Chaber of an electromagnetic railgun[D]. Nanjing: Nanjing University of Science & Technology, 2016
    [16] 吉晓菲, 孙发鱼, 白瑞青, 等. 电磁炮弹丸遥测装置的电磁防护方法[J]. 探测与控制学报, 2019, 41(2): 57-62

    Ji Xiaofei, Sun Fayu, Bai Ruiqing, et al. Electromagnetic protection method for electromagnetic projectile telemetry device[J]. Journal of Detection & Control, 2019, 41(2): 57-62
    [17] 文瑞虎, 栗苹, 黄峥, 等. 电磁轨道炮无线电引信综合电磁防护方法[J]. 兵工学报, 2024, 45(11): 3833-3840 doi: 10.12382/bgxb.2023.0944

    Wen Ruihu, Li Ping, Huang Zheng, et al. Comprehensive electromagnetic protection method of radio fuze for electromagnetic railgun[J]. Acta Armamentarii, 2024, 45(11): 3833-3840 doi: 10.12382/bgxb.2023.0944
    [18] 郭仁荃, 李豪杰, 杨宇鑫. 基于COMSOL的轨道炮弹引信部位磁场组合屏蔽仿真[J]. 探测与控制学报, 2020, 42(3): 8-13,19

    Guo Renquan, Li Haojie, Yang Yuxin. COMSOL simulation of railgun projectile fuze combination magnetic shielding[J]. Journal of Detection & Control, 2020, 42(3): 8-13,19
    [19] Yin Dongmei, Yu Nan, Sun Chengcheng, et al. Numerical analysis of the in-bore magnetic shielding of the series-enhanced electromagnetic railgun[J]. IEEE Transactions on Plasma Science, 2024, 52(9): 4705-4716. doi: 10.1109/TPS.2024.3478209
    [20] 向红军, 曹根荣, 乔志明, 等. 大口径轨道炮弹药运用中多物理场环境表征[J]. 陆军工程大学学报, 2024, 3(1): 56-62

    Xiang Hongjun, Cao Genrong, Qiao Zhiming, et al. Multi-physical field environment characterization of projectiles in large-caliber railgun launching[J]. Journal of Army Engineering University of PLA, 2024, 3(1): 56-62
    [21] 葛霞. 电磁炮发射过程中电磁场环境的分析与应用研究[D]. 南京: 南京理工大学, 2009

    Ge Xia. Analysis and application research on the electromagnetic field environment during the emission process of electromagnetic cannons[D]. Nanjing: Nanjing University of Science & Technology, 2009
    [22] 宋晨阳. 圆膛四轨电磁炮磁场环境对弹载无线信号发射检测系统的影响研究[D]. 南京: 南京理工大学, 2019

    Song Chenyang. Research on the influence of magnetic field environment of round-barreled four-barrel electromagnetic gun on the wireless signal transmission detection system of the projectile[D]. Nanjing: Nanjing University of Science & Technology, 2019
    [23] 高博, 邱群先, 郄文静, 等. 电磁轨道炮电枢多场耦合分析与试验研究[J]. 电工技术学报, 2020, 35(s2): 341-345

    Gao Bo, Qiu Qunxian, Qie Wenjing, et al. Multi-field coupling analysis and experimental research on armature of electromagnetic railgun[J]. Transactions of China Electrotechnical Society, 2020, 35(s2): 341-345
    [24] 王明东, 王天祥. 新概念武器的现状与发展趋势[J]. 四川兵工学报, 2014, 35(6): 1-5

    Wang Mingdong, Wang Tianxiang. Actuality and development trend of new concept weapons[J]. Journal of Sichuan Ordnance, 2014, 35(6): 1-5
    [25] 乔志明, 雷彬, 吕庆敖, 等. 电磁轨道炮关键技术与发展趋势分析[J]. 火炮发射与控制学报, 2016, 37(2): 91-95

    Qiao Zhiming, Lei Bin, Lü Qing’ao, et al. Analysis of the key technologies and development tendency of electromagnetic railguns[J]. Journal of Gun Launch & Control, 2016, 37(2): 91-95
  • 加载中
图(13)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  27
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-19
  • 修回日期:  2025-07-21
  • 录用日期:  2025-07-21
  • 网络出版日期:  2025-07-28

目录

    /

    返回文章
    返回