留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于双层磁性介质与榫眼结构的超材料吸波体仿真设计

宋彦君 吕成 仉佳 左绍奇 王青敏 高志伟

宋彦君, 吕成, 仉佳, 等. 一种基于双层磁性介质与榫眼结构的超材料吸波体仿真设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250151
引用本文: 宋彦君, 吕成, 仉佳, 等. 一种基于双层磁性介质与榫眼结构的超材料吸波体仿真设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250151
Song Yanjun, Lv Cheng, Zhang Jia, et al. A novel metamaterial absorber based on double magnetic media and mortise structure[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250151
Citation: Song Yanjun, Lv Cheng, Zhang Jia, et al. A novel metamaterial absorber based on double magnetic media and mortise structure[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250151

一种基于双层磁性介质与榫眼结构的超材料吸波体仿真设计

doi: 10.11884/HPLPB202537.250151
基金项目: 河北省电磁环境效应与信息处理重点实验室自主课题项目(ZZKT-202303)
详细信息
    作者简介:

    宋彦君,songyanjun.ts@crrcgc.cc

    通讯作者:

    王青敏,wangqingmin@stdu.edu.cn

  • 中图分类号: TB34

A novel metamaterial absorber based on double magnetic media and mortise structure

  • 摘要: 针对薄型化微波吸波材料在低频段带宽受限的技术瓶颈,本研究提出一种基于双层磁性介质与榫眼结构的新型吸波体设计方案,重点突破材料厚度与吸收带宽间的制约关系,实现L/S频段电磁波的高效吸收。研究采用磁性介质基板构建双层异质结构,结合表面周期排布的榫眼式金属谐振单元,利用磁损耗与结构谐振的协同效应增强电磁能量耗散。仿真结果表明,该吸波体在1.16~2.82 GHz频段内吸收率超过90%,有效覆盖L波段并延伸至S波段部分频段,在薄层条件下实现了1.66 GHz的宽频吸收,解决了低频段吸波材料厚度与带宽的固有矛盾,可为新一代薄型宽带吸波体的工程应用提供可行方案。
  • 图  1  超材料吸波体模型示意图

    Figure  1.  Schematic diagram of the metamaterial absorber model

    图  2  不同情况下的反射系数曲线对比

    Figure  2.  Comparison of reflection coefficient curves under different conditions

    图  3  不同圆形半径R对吸波体性能影响仿真结果

    Figure  3.  Simulation results of the influence of different circular radii R on the performance of absorber

    图  4  不同凹槽深度T对吸波体性能影响仿真结果

    Figure  4.  Simulation results of the influence of different groove depths T on the performance of absorber

    图  5  超材料吸波体吸波性能

    Figure  5.  Absorption performance of the metamaterial absorber

    图  6  在1.36 GHz和2.29 GHz两个吸收峰处的能量损耗分布图

    Figure  6.  Simulated power loss distribution at the two absorption peaks of 1.36 GHz and 2.29 GHz

    表  1  单元结构的尺寸参数

    Table  1.   Dimensional parameters of unit structure

    Structure
    Parameters
    Parameter
    Value/mm
    P 20
    H1 1.9
    H2 6
    R 8.5
    w 1
    L 6.1
    T 0.5
    下载: 导出CSV
  • [1] 徐锐敏, 唐璞, 薛正辉, 等. 微波技术基础[M]. 北京: 科学出版社, 2009

    Xu Ruimin, Tang Pu, Xue Zhenghui, et al. Fundamentals of microwave technology[M]. Beijing: Science Press, 2009
    [2] Li Changzhi, Peng Zhengyu, Huang T Y, et al. A review on recent progress of portable short-range noncontact microwave radar systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(5): 1692-1706. doi: 10.1109/TMTT.2017.2650911
    [3] Skolnik M. Role of radar in microwaves[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 625-632. doi: 10.1109/22.989947
    [4] Anderson D A, Sapiro R E, Raithel G. An atomic receiver for AM and FM radio communication[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(5): 2455-2462. doi: 10.1109/TAP.2020.2987112
    [5] Jones D A, Lelyveld T P, Mavrofidis S D, et al. Microwave heating applications in environmental engineering—a review[J]. Resources, Conservation and Recycling, 2002, 34(2): 75-90. doi: 10.1016/S0921-3449(01)00088-X
    [6] Warwick J W, Pearce J B, Evans D R, et al. Planetary radio astronomy observations from voyager 1 near Saturn[J]. Science, 1981, 212(4491): 239-243. doi: 10.1126/science.212.4491.239
    [7] 李希, 王东俊, 张袁, 等. 超宽带薄型频率选择表面吸波体设计[J]. 强激光与粒子束, 2024, 36:063001 doi: 10.11884/HPLPB202436.230443

    Li Xi, Wang Dongjun, Zhang Yuan, et al. Design of an ultra-wideband thin frequency selective surface absorber[J]. High Power Laser and Particle Beams, 2024, 36: 063001 doi: 10.11884/HPLPB202436.230443
    [8] Sambhav S, Ghosh J. Low profile polarization-insensitive wideband rasorber with in-band transmission[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2022, 32: e23444.
    [9] Liao Kun, Liu Shaobin, Shao Xianxian, et al. An ultra-wideband dual-band hybrid frequency-selective rasorber[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2022, 32: e23197.
    [10] Cheng Yongzhi, He Bo, Zhao Jingcheng, et al. Ultra-thin low-frequency broadband microwave absorber based on magnetic medium and metamaterial[J]. Journal of Electronic Materials, 2017, 46(2): 1293-1299. doi: 10.1007/s11664-016-5115-z
    [11] Wang Zhenxu, Wang Jiafu, Han Yajuan, et al. Wideband absorption at low microwave frequencies assisted by magnetic squeezing in metamaterials[J]. Frontiers in Physics, 2020, 8: 595642. doi: 10.3389/fphy.2020.595642
    [12] Zhang Zilong, Zhang Lei, Chen Xiqiao, et al. Broadband metamaterial absorber for low-frequency microwave absorption in the S-band and C-band[J]. Journal of Magnetism and Magnetic Materials, 2020, 497: 166075. doi: 10.1016/j.jmmm.2019.166075
    [13] Ni Xiaomin, Zheng Zhong, Xiao Xiukun, et al. Silica-coated iron nanoparticles: shape-controlled synthesis, magnetism and microwave absorption properties[J]. Materials Chemistry and Physics, 2010, 120(1): 206-212. doi: 10.1016/j.matchemphys.2009.10.047
    [14] Wei Guoke, Wang Tao, Zhang Hang, et al. Enhanced microwave absorption of barium cobalt hexaferrite composite with improved bandwidth via c-plane alignment[J]. Journal of Magnetism and Magnetic Materials, 2019, 471: 267-273. doi: 10.1016/j.jmmm.2018.09.063
    [15] Huang Wanqiao, Zhu Zhenghou. Broadband metamaterial absorbers based on magnetic composites[J]. Journal of Magnetism and Magnetic Materials, 2023, 576: 170792. doi: 10.1016/j.jmmm.2023.170792
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  18
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-23
  • 修回日期:  2022-08-07
  • 录用日期:  2025-06-29
  • 网络出版日期:  2025-08-13

目录

    /

    返回文章
    返回