[1] |
谭志良, 胡小锋, 毕军建, 等. 电磁脉冲防护理论与技术[M]. 北京: 国防工业出版社, 2013Tan Zhiliang, Hu Xiaofeng, Bi Junjian, et al. Electromagnetic pulse protection theory and technology[M]. Beijing: National Defense Industry Press, 2013
|
[2] |
谭志良, 李亚南, 宋培姣. 射频前端强电磁脉冲防护研究进展[J]. 北京理工大学学报, 2020, 40(3):231-242Tan Zhiliang, Li Yanan, Song Peijiao. Relevant research on electromagnetic pulse protection of RF front-end[J]. Transactions of Beijing Institute of Technology, 2020, 40(3): 231-242
|
[3] |
毋召锋, 徐延林, 刘培国, 等. 电磁防护技术发展综述与展望[J]. 强激光与粒子束, 2024, 36:043001 doi: 10.11884/HPLPB202436.230375Wu Zhaofeng, Xu Yanlin, Liu Peiguo, et al. Review and prospect of electromagnetic protection technology development[J]. High Power Laser and Particle Beams, 2024, 36: 043001 doi: 10.11884/HPLPB202436.230375
|
[4] |
李宝毅, 赵亚娟, 王蓬, 等. 电磁防护超材料在国防领域中的应用与前景展望[J]. 电子元件与材料, 2019, 38(5):1-5Li Baoyi, Zhao Yajuan, Wang Peng, et al. The application and prospects of metamaterials for electromagnetic protection in defense fields[J]. Electronic Components and Materials, 2019, 38(5): 1-5
|
[5] |
边永亮, 王永胜, 郭文卿, 等. 关于智能电磁防护材料及技术的研究[J]. 信息系统工程, 2022, 35(4):145-148 doi: 10.3969/j.issn.1001-2362.2022.04.037Bian Yongliang, Wang Yongsheng, Guo Wenqing, et al. Research on intelligent electromagnetic protection materials and technologies[J]. Information System Engineering, 2022, 35(4): 145-148 doi: 10.3969/j.issn.1001-2362.2022.04.037
|
[6] |
梁圆龙, 黄贤俊, 姚理想, 等. 透明电磁屏蔽材料的研究进展[J]. 安全与电磁兼容, 2021(2):61-68,103 doi: 10.3969/j.issn.1005-9776.2021.02.012Liang Yuanlong, Huang Xianjun, Yao Lixiang, et al. Recent research advances on transparent electromagnetic shielding materials[J]. Safety & EMC, 2021(2): 61-68,103 doi: 10.3969/j.issn.1005-9776.2021.02.012
|
[7] |
Yao Lixiang, Liang Yuanlong, Wen Kui, et al. Demonstration of tunable shielding effectiveness in GHz and THz bands for flexible graphene/ion gel/graphene film[J]. Applied Sciences, 2021, 11: 5133. doi: 10.3390/app11115133
|
[8] |
Liu Shuai, Wang Sheng, Sang Min, et al. Nacre-mimetic hierarchical architecture in polyborosiloxane composites for synergistically enhanced impact resistance and ultra-efficient electromagnetic interference shielding[J]. ACS Nano, 2022, 16(11): 19067-19086. doi: 10.1021/acsnano.2c08104
|
[9] |
Liang Yuanlong, Huang Xianjun, Pan Jisheng, et al. Shorted micro-waveguide array for high optical transparency and superior electromagnetic shielding in ultra-wideband frequency spectrum[J]. Advanced Materials Technologies, 2023, 8: 2201532. doi: 10.1002/admt.202201532
|
[10] |
Zhang Yali, Liu An, Tian Yuanyuan, et al. Direct-ink-writing printed aerogels with dynamically reversible thermal management and tunable electromagnetic interference shielding[J]. Advanced Materials, 2025: 2505521.
|
[11] |
Deng Yangui, Huang Jianguo, Ning Xiangchun. Electroless nickel, cobalt, and cobalt/nickel coatings on E-glass fabrics: towards high-performance electromagnetic interference shielding materials[J]. Journal of Alloys and Compounds, 2025, 1036: 181659. doi: 10.1016/j.jallcom.2025.181659
|
[12] |
陈思琦, 李莉, 李乙, 等. 材料基因工程技术在分子筛领域中的应用[J]. 高等学校化学学报, 2021, 42(1):179-187 doi: 10.7503/cjcu20200490Chen Siqi, Li Li, Li Yi, et al. Applications of materials genome engineering in zeolites[J]. Chemical Journal of Chinese Universities, 2021, 42(1): 179-187 doi: 10.7503/cjcu20200490
|
[13] |
孙志梅, 王冠杰, 张烜广, 等. 材料基因工程加速新材料设计与研发[J]. 北京航空航天大学学报, 2022, 48(9):1575-1588Sun Zhimei, Wang Guanjie, Zhang Xuanguang, et al. Novel material design and development accelerated by materials genome engineering[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1575-1588
|
[14] |
宿彦京, 付华栋, 白洋, 等. 中国材料基因工程研究进展[J]. 金属学报, 2020, 56(10):1313-1323 doi: 10.11900/0412.1961.2020.00199Su Yanjing, Fu Huadong, Bai Yang, et al. Progress in materials genome engineering in China[J]. Acta Metallurgica Sinica, 2020, 56(10): 1313-1323 doi: 10.11900/0412.1961.2020.00199
|
[15] |
刘彻, 马骞, 李廉林, 等. 人工智能超材料[J]. 光学学报, 2021, 41:0823004 doi: 10.3788/AOS202141.0823004Liu Che, Ma Qian, Li Lianlin, et al. Artificial intelligence metamaterials[J]. Acta Optica Sinica, 2021, 41: 0823004 doi: 10.3788/AOS202141.0823004
|
[16] |
葛宏义, 补雨薇, 蒋玉英, 等. 人工智能在太赫兹超材料设计与优化领域的研究进展[J]. 激光与光电子学进展, 2024, 61:2300003Ge Hongyi, Bu Yuwei, Jiang Yuying, et al. Advances in artificial intelligence for design and optimization of terahertz metamaterials[J]. Laser & Optoelectronics Progress, 2024, 61: 2300003
|
[17] |
Tang Chengqing, Zhang Sheng, Zhang Jiapeng, et al. Silicon carbide coated carbon nanotube porous sponge with super Elasticity, low Density, high thermal Resistivity, and synergistically enhanced electromagnetic interference shielding performances[J]. Chemical Engineering Journal, 2023, 469: 144011. doi: 10.1016/j.cej.2023.144011
|
[18] |
张贝, 晁敏, 李晓东, 等. 具有恶劣环境耐受性的柔性MXene-炭黑/聚酰亚胺电磁屏蔽复合薄膜的制备与性能[J]. 复合材料学报, 2025, 42(6):3110-3121Zhang Bei, Chao Min, Li Xiaodong, et al. Preparation and properties of flexible MXene-carbon black/polyimide electromagnetic shielding composite films with harsh environment resistance[J]. Acta Materiae Compositae Sinica, 2025, 42(6): 3110-3121
|
[19] |
樊宇迪, 李达, 李尔平. 有源频率选择表面及其电磁屏蔽应用研究进展[J]. 安全与电磁兼容, 2024(5):9-21Fan Yudi, Li Da, Li Erping. Research advances of active frequency selective surfaces and their applications to electromagnetic shielding[J]. Safety & EMC, 2024(5): 9-21
|
[20] |
Costa F, Monorchio A, Manara G. Efficient analysis of frequency-selective surfaces by a simple equivalent-circuit model[J]. IEEE Antennas and Propagation Magazine, 2012, 54(4): 35-48. doi: 10.1109/MAP.2012.6309153
|
[21] |
Yang Cheng, Liu Peiguo, Huang Xianjun. A novel method of energy selective surface for adaptive HPM/EMP protection[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 112-115. doi: 10.1109/LAWP.2013.2243105
|
[22] |
Zhang Jihong, Lin Mingtuan, Wu Zhaofeng, et al. Energy selective surface with power-dependent transmission coefficient for high-power microwave protection in waveguide[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(4): 2494-2502. doi: 10.1109/TAP.2019.2894274
|
[23] |
Zhao Chen, Wang Chaofu, Aditya S. Power-dependent frequency-selective surface: concept, design, and experiment[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3215-3220. doi: 10.1109/TAP.2019.2900408
|
[24] |
Zhou Lin, Liu Liangliang, Shen Zhongxiang. High-performance energy selective surface based on the double-resonance concept[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 7658-7666. doi: 10.1109/TAP.2021.3075548
|
[25] |
Zhang Jihong, Hu Ning, Wu Zhaofeng, et al. Adaptive high-impedance surface for prevention of waveguide’s high-intensity wave[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 7679-7687. doi: 10.1109/TAP.2021.3070052
|
[26] |
Hu Ning, Zhao Yuting, Zhang Jihong, et al. High-performance energy selective surface based on equivalent circuit design approach[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4526-4538. doi: 10.1109/TAP.2021.3137293
|
[27] |
Hu Ning, Zha Song, Tian Tao, et al. Design and analysis of multiband energy selective surface based on semiconductors[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(4): 1076-1085. doi: 10.1109/TEMC.2022.3166156
|
[28] |
Wu Zhaofeng, Xu Yanlin, Liu Peiguo, et al. An ultra-broadband energy selective surface design method: from filter circuits to metamaterials[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(7): 5865-5873. doi: 10.1109/TAP.2023.3276447
|
[29] |
Liu Peiguo, Liu Hanqing. Electromagnetic protection strategy using adaptive energy selective mechanism[J]. The Innovation, 2023, 4: 100513.
|
[30] |
Tian Tao, Huang Xianjun, Xu Yanlin, et al. A wideband energy selective surface with quasi-elliptic bandpass response and high-power microwave shielding[J]. IEEE Transactions on Electromagnetic Compatibility, 2024, 66(1): 224-233. doi: 10.1109/TEMC.2023.3325438
|
[31] |
刘培国, 虎宁. 能量选择电磁防护方法理论与应用[J]. 电波科学学报, 2024, 39(3):385-394,431 doi: 10.12265/j.cjors.2023181Liu Peiguo, Hu Ning. Theory and application of energy selective electromagnetic protection method[J]. Chinese Journal of Radio Science, 2024, 39(3): 385-394,431 doi: 10.12265/j.cjors.2023181
|
[32] |
Zha Song, Qu Zhuang, Zhang Jihong, et al. A gain-reconfigurable reflector antenna with surface-mounted field-induced artificial magnetic conductor for adaptive HIRF prevention[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(9): 7252-7260. doi: 10.1109/TAP.2024.3434371
|
[33] |
付云起, 高冕, 陈强, 等. 透明吸波体综述[J]. 微波学报, 2022, 38(3):1-7Fu Yunqi, Gao Mian, Chen Qiang, et al. Overview of transparent absorbers[J]. Journal of Microwaves, 2022, 38(3): 1-7
|
[34] |
田宇泽, 金晶, 杨河林, 等. 微波电磁超材料设计与应用研究进展[J]. 中国科学: 物理学 力学 天文学, 2023, 53: 290016Tian Yuze, Jin Jing, Yang Helin, et al. Research progress on design and application of microwave electromagnetic metamaterial[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2023, 53: 290016
|
[35] |
National Science and Technology Council. Materials genome initiative for global competitiveness[R]. Washington: Office of Science and Technology Policy, 2011.
|
[36] |
Merchant A, Batzner S, Schoenholz S S, et al. Scaling deep learning for materials discovery[J]. Nature, 2023, 624(7990): 80-85. doi: 10.1038/s41586-023-06735-9
|
[37] |
Zeni C, Pinsler R, Zügner D, et al. A generative model for inorganic materials design[J]. Nature, 2025, 639(8055): 624-632. doi: 10.1038/s41586-025-08628-5
|
[38] |
Szymanski N J, Rendy B, Fei Yuxing, et al. An autonomous laboratory for the accelerated synthesis of novel materials[J]. Nature, 2023, 624(7990): 86-91. doi: 10.1038/s41586-023-06734-w
|
[39] |
Wang Zhilong, Chen An, Tao Kehao, et al. AlphaMat: a material informatics hub connecting data, features, models and applications[J]. Npj Computational Materials, 2023, 9: 130. doi: 10.1038/s41524-023-01086-5
|
[40] |
Chen Ziyi, Xie Fankai, Wan Meng, et al. MatChat: a large language model and application service platform for materials science[J]. Chinese Physics B, 2023, 32: 118104. doi: 10.1088/1674-1056/ad04cb
|
[41] |
Cui Tiejun, Qi Meiqing, Wan Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3: e218.
|
[42] |
Zhang Qian, Wan Xiang, Liu Shuo, et al. Shaping electromagnetic waves using software-automatically-designed metasurfaces[J]. Scientific Reports, 2017, 7: 3588. doi: 10.1038/s41598-017-03764-z
|
[43] |
Qiu Tianshuo, Shi Xin, Wang Jiafu, et al. Deep learning: a rapid and efficient route to automatic metasurface design[J]. Advanced Science, 2019, 6: 1900128. doi: 10.1002/advs.201900128
|
[44] |
Zhang Qian, Liu Che, Wan Xiang, et al. Machine-learning designs of anisotropic digital coding metasurfaces[J]. Advanced Theory and Simulations, 2019, 2: 1800132. doi: 10.1002/adts.201800132
|
[45] |
Lu Shuaihua, Zhou Qionghua, Guo Yilv, et al. Coupling a crystal graph multilayer descriptor to active learning for rapid discovery of 2D ferromagnetic semiconductors/half-metals/metals[J]. Advanced Materials, 2020, 32: 2002658. doi: 10.1002/adma.202002658
|
[46] |
Hu Shengguo, Li Mingyi, Xu Jiawen, et al. Electromagnetic metamaterial agent[J]. Light: Science & Applications, 2025, 14: 12.
|
[47] |
Pahlavani H, Tsifoutis-Kazolis K, Saldivar M C, et al. Deep learning for size-agnostic inverse design of random-network 3D printed mechanical metamaterials[J]. Advanced Materials, 2024, 36: 2303481. doi: 10.1002/adma.202303481
|
[48] |
Qian Chao, Kaminer I, Chen Hongsheng. A guidance to intelligent metamaterials and metamaterials intelligence[J]. Nature Communications, 2025, 16: 1154. doi: 10.1038/s41467-025-56122-3
|
[49] |
Yao Lixiang, Huang Xianjun, Chen Hongting, et al. A high-efficiency and effectiveness designing methodology for discrete-coded energy selective surface based on machine learning[J]. IEEE Transactions on Antennas and Propagation, 2025, 73(4): 2427-2437. doi: 10.1109/TAP.2024.3511089
|
[50] |
Kingma D P, Welling M. Auto-encoding variational bayes[C]//Proceedings of the International Conference on Learning Representations. 2014.
|
[51] |
Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. 2014: 2672-2680.
|
[52] |
朱宏伟. 生成式人工智能与未来材料科学[J]. 自然杂志, 2024, 46(1):46-49 doi: 10.3969/j.issn.0253-9608.2024.01.005Zhu Hongwei. Generative artificial intelligence and future materials science[J]. Chinese Journal of Nature, 2024, 46(1): 46-49 doi: 10.3969/j.issn.0253-9608.2024.01.005
|
[53] |
Scarselli F, Gori M, Tsoi A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80. doi: 10.1109/TNN.2008.2005605
|
[54] |
Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations. 2017.
|
[55] |
Zhou Jie, Cui Ganqu, Hu Shengding, et al. Graph neural networks: a review of methods and applications[J]. AI Open, 2020, 1: 57-81. doi: 10.1016/j.aiopen.2021.01.001
|
[56] |
Gilmer J, Schoenholz S S, Riley P F, et al. Neural message passing for Quantum chemistry[C]//Proceedings of the 34th International Conference on Machine Learning. 2017: 1263-1272.
|
[57] |
Reiser P, Neubert M, Eberhard A, et al. Graph neural networks for materials science and chemistry[J]. Communications Materials, 2022, 3: 93. doi: 10.1038/s43246-022-00315-6
|
[58] |
Ruff R, Reiser P, Stühmer J, et al. Connectivity optimized nested line graph networks for crystal structures[J]. Digital Discovery, 2024, 3(3): 594-601. doi: 10.1039/D4DD00018H
|
[59] |
Sutton R S, Barto A G. Reinforcement learning: an introduction[M]. Cambridge: MIT Press, 1998.
|
[60] |
Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533. doi: 10.1038/nature14236
|
[61] |
Arulkumaran K, Deisenroth M P, Brundage M, et al. Deep reinforcement learning: a brief survey[J]. IEEE Signal Processing Magazine, 2017, 34(6): 26-38. doi: 10.1109/MSP.2017.2743240
|
[62] |
Bassman Oftelie L, Rajak P, Kalia R K, et al. Active learning for accelerated design of layered materials[J]. npj Computational Materials, 2018, 4: 74. doi: 10.1038/s41524-018-0129-0
|
[63] |
Rajak P, Wang Beibei, Nomura K I, et al. Autonomous reinforcement learning agent for stretchable kirigami design of 2D materials[J]. npj Computational Materials, 2021, 7: 102. doi: 10.1038/s41524-021-00572-y
|
[64] |
Dissanayake M W M G, Phan-Thien N. Neural-network-based approximations for solving partial differential equations[J]. Communications in Numerical Methods in Engineering, 1994, 10(3): 195-201. doi: 10.1002/cnm.1640100303
|
[65] |
Raissi M, Perdikaris P, Karniadakis G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
|
[66] |
Karniadakis G E, Kevrekidis I G, Lu Lu, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422-440. doi: 10.1038/s42254-021-00314-5
|
[67] |
Haghighat E, Raissi M, Moure A, et al. A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 379: 113741. doi: 10.1016/j.cma.2021.113741
|
[68] |
Jin Hongwei, Balaprakash P, Zou A, et al. Physics-informed heterogeneous graph neural networks for DC blocker placement[J]. Electric Power Systems Research, 2024, 235: 110795. doi: 10.1016/j.jpgr.2024.110795
|
[69] |
Ren Xiaodan, Lyu Xianrui. Mixed form based physics-informed neural networks for performance evaluation of two-phase random materials[J]. Engineering Applications of Artificial Intelligence, 2024, 127: 107250. doi: 10.1016/j.engappai.2023.107250
|
[70] |
Chang Huiyu, Gao Jiale, Lai Senfeng, et al. Prediction of the electromagnetic shielding effectiveness of metal grid using neural network algorithm[J]. IEEE Photonics Journal, 2021, 13: 7700106.
|
[71] |
马靖男, 王蒙军, 郑宏兴, 等. 超材料吸波体的深度学习预测模型研究[J]. 电波科学学报, 2025, 40(3):494-502 doi: 10.12265/j.cjors.2025007Ma Jingnan, Wang Mengjun, Zheng Hongxing, et al. Research on a deep neural network-based prediction method for metamaterial absorbers[J]. Chinese Journal of Radio Science, 2025, 40(3): 494-502 doi: 10.12265/j.cjors.2025007
|
[72] |
Du Wanli, Chen Guangzhi, Zhang Ziang, et al. SCS-Net: a DNN-based electromagnetic shielding effectiveness analysis method for slotted composite structures[J]. Chinese Journal of Aeronautics, 2025, 38: 103395. doi: 10.1016/j.cja.2025.103395
|
[73] |
Kanmaz T B, Ozturk E, Demir H V, et al. Deep-learning-enabled electromagnetic near-field prediction and inverse design of metasurfaces[J]. Optica, 2023, 10(10): 1373-1382. doi: 10.1364/OPTICA.498211
|
[74] |
Li Changfeng, Wang Ge, Peng Mengyue, et al. Reconfigurable origami/kirigami metamaterial absorbers developed by fast inverse design and low-concentration MXene inks[J]. ACS Applied Materials & Interfaces, 2024, 16(32): 42448-42460.
|
[75] |
He Chenglei, Yu Liya, Jiang Yun, et al. Deep-learning approach for developing bilayered electromagnetic interference shielding composite aerogels based on multimodal data fusion neural networks[J]. Journal of Colloid and Interface Science, 2025, 688: 79-92. doi: 10.1016/j.jcis.2025.02.133
|
[76] |
Jiang Xiaoqiang, Fan Wenhui, Chen Xu, et al. High accuracy inverse design of reconfigurable metasurfaces with transmission-reflection-integrated achromatic functionalities[J]. Nanophotonics, 2025, 14(7): 921-934. doi: 10.1515/nanoph-2024-0680
|
[77] |
On H I, Jeong L, Jung M, et al. Optimal design of microwave absorber using novel variational autoencoder from a latent space search strategy[J]. Materials & Design, 2021, 212: 110266.
|