Volume 33 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
Liu Chang, Li Hanyu, Bao Xianfeng, et al. Electromagnetic pulse effect simulation and rating of RF front-end of super-heterodyne receiver[J]. High Power Laser and Particle Beams, 2021, 33: 123016. doi: 10.11884/HPLPB202133.210380
Citation: Liu Chang, Li Hanyu, Bao Xianfeng, et al. Electromagnetic pulse effect simulation and rating of RF front-end of super-heterodyne receiver[J]. High Power Laser and Particle Beams, 2021, 33: 123016. doi: 10.11884/HPLPB202133.210380

Electromagnetic pulse effect simulation and rating of RF front-end of super-heterodyne receiver

doi: 10.11884/HPLPB202133.210380
  • Received Date: 2021-08-30
  • Rev Recd Date: 2021-10-22
  • Available Online: 2021-11-02
  • Publish Date: 2021-12-15
  • A co-simulation method using Verilog-a and circuit netlist is adopted for modeling and simulating the electromagnetic pulse (EMP) effects of RF front-end. The low-noise amplifier (LNA) within the RF front-end is modeled via Verilog-a, which is then extended to include the damage effect due to EMP. A standard yet simplified RF front-end of super-heterodyne receiver is constructed using the extended LNA model. The results of S-parameter simulation and transient simulation show that the front-end itself and the extended LNA model can be used to simulate the normal operational functionalities of the receiver. For verifying the extended LNA model’s capability that it can be used to simulate the normal, disturbance and damage effects due to EMP environment, an EMP-dipole antenna coupling channel is modeled via equivalent circuit, the output voltage signals of the circuit are simulated with different EMP-dipole antenna coupling voltage signals as the inputs. In the paper, the EMP effects are categorized into three different levels: non-effect, disturbance, and damage. The corresponding peak voltage thresholds are identified for the RF front-end of super-heterodyne receiver.
  • loading
  • [1]
    Yang Hong, Yuan J S, Liu Yi, et al. Effect of gate-oxide breakdown on RF performance[J]. IEEE Transactions on Device and Materials Reliability, 2003, 3(3): 93-97. doi: 10.1109/TDMR.2003.816656
    [2]
    MÅnsson D, Thottappillil R, Nilsson T, et al. Susceptibility of civilian GPS receivers to electromagnetic radiation[J]. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(2): 434-437. doi: 10.1109/TEMC.2008.921015
    [3]
    Chen Dong, Xu Liming, Zhang Bisheng, et al. Research on the effect of high power microwave on low noise amplifier and limiter based on the injection method[J]. Journal of Electromagnetic Analysis and Applications, 2010, 2(2): 111-115. doi: 10.4236/jemaa.2010.22016
    [4]
    Zhen Kelong, Lü Shanwei, Zhang Yan. Research on damage of intense electromagnetic pulse to radar receiving system[C]//Proceedings of 2012 5th Global Symposium on Millimeter-Waves. 2012: 458-461.
    [5]
    李岩, 程二威, 张冬晓, 等. 无人机收发信机快沿电磁脉冲效应研究[J]. 强激光与粒子束, 2018, 30:103201. (Li Yan, Cheng Erwei, Zhang Dongxiao, et al. Effect of fast rise-time electromagnetic pulse on UAV transceiver[J]. High Power Laser and Particle Beams, 2018, 30: 103201 doi: 10.11884/HPLPB201830.180127
    [6]
    Zhang Cunbo, Wang Honggang, Zhang Jiande, et al. Nonlinear and damage properties of BJT injected with microwave pulses[J]. IEEE Transactions on Plasma Science, 2016, 44(3): 239-244. doi: 10.1109/TPS.2016.2524661
    [7]
    Michels R, Willenbockel M, Gronwald F. A parametric study of an energy storage effect due to nonlinear components and HPEM-excitation[C]//Proceedings of 2019 International Symposium on Electromagnetic Compatibility-EMC EUROPE. Barcelona, Spain, 2019: 59-64.
    [8]
    李亚南, 谭志良, 宋培姣. 射频前端强电磁脉冲防护模块设计[J]. 强激光与粒子束, 2018, 30:013204. (Li Ya’nan, Tan Zhiliang, Song Peijiao. Simulation and design of RF front end electromagnetic protection module[J]. High Power Laser and Particle Beams, 2018, 30: 013204 doi: 10.11884/HPLPB201830.170194
    [9]
    Roche N J H, Khachatrian A, Buchner S P, et al. Impact of cumulative irradiation degradation and circuit board design on the parameters of ASETs induced in discrete BJT-based circuits[J]. IEEE Transactions on Nuclear Science, 2015, 62(6): 2732-2742. doi: 10.1109/TNS.2015.2498309
    [10]
    Dilli Z, Akturk A, Goldsman N, et al. An enhanced specialized SiC power MOSFET simulation system[C]//Proceedings of 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). 2015: 463-466.
    [11]
    Baek J E, Cho Y M, Ko K C. Damage modeling of a low-noise amplifier in an RF front-end induced by a high power electromagnetic pulse[J]. IEEE Transactions on Plasma Science, 2017, 45(5): 798-804. doi: 10.1109/TPS.2017.2684196
    [12]
    赵墨, 吴伟, 李进玺, 等. 基于Verilog-A模型的同轴电缆X射线响应电路仿真[J]. 强激光与粒子束, 2015, 27:103240. (Zhao Mo, Wu Wei, Li Jinxi, et al. Circuit simulation of cable response to X-ray radiation[J]. High Power Laser and Particle Beams, 2015, 27: 103240 doi: 10.11884/HPLPB201527.103240
    [13]
    刘人豪, 王军. 纳米MOSFET毫米波噪声的简洁模型[J]. 强激光与粒子束, 2019, 31:084102. (Liu Renhao, Wang Jun. Compact model of millimeter wave noise in nano-MOSFET[J]. High Power Laser and Particle Beams, 2019, 31: 084102 doi: 10.11884/HPLPB201931.190059
    [14]
    Liao Yi, Hubing T H, Su Donglin. Equivalent circuit for dipole antennas in a lossy medium[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(8): 3950-3953. doi: 10.1109/TAP.2012.2201112
    [15]
    Tang T G, Tieng Q M, Gunn M W. Equivalent circuit of a dipole antenna using frequency-independent lumped elements[J]. IEEE Transactions on Antennas and Propagation, 1993, 41(1): 100-103. doi: 10.1109/8.210122
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (752) PDF downloads(98) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return