留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋磁非线性传输线的等效电路仿真分析

翟泓翔 朱丹妮 胡标 崔言程 王海涛

翟泓翔, 朱丹妮, 胡标, 等. 旋磁非线性传输线的等效电路仿真分析[J]. 强激光与粒子束, 2026, 38: 023006. doi: 10.11884/HPLPB202638.250123
引用本文: 翟泓翔, 朱丹妮, 胡标, 等. 旋磁非线性传输线的等效电路仿真分析[J]. 强激光与粒子束, 2026, 38: 023006. doi: 10.11884/HPLPB202638.250123
Zhai Hongxiang, Zhu Danni, Hu Biao, et al. Simulation analysis of the equivalent circuit of a gyro-magnetic nonlinear transmission line[J]. High Power Laser and Particle Beams, 2026, 38: 023006. doi: 10.11884/HPLPB202638.250123
Citation: Zhai Hongxiang, Zhu Danni, Hu Biao, et al. Simulation analysis of the equivalent circuit of a gyro-magnetic nonlinear transmission line[J]. High Power Laser and Particle Beams, 2026, 38: 023006. doi: 10.11884/HPLPB202638.250123

旋磁非线性传输线的等效电路仿真分析

doi: 10.11884/HPLPB202638.250123
基金项目: 国家自然科学基金项目(62301585)
详细信息
    作者简介:

    翟泓翔,1163160405@qq.com

    通讯作者:

    朱丹妮,redgirl1723@nue.edu.cn

  • 中图分类号: TN782

Simulation analysis of the equivalent circuit of a gyro-magnetic nonlinear transmission line

  • 摘要: 旋磁非线性传输线因其独特的小型化结构、实时频率调谐能力及宽谱微波输出特性,在小型固态化高功率微波源方向展现出重要应用价值。通过理论推导获得GNLTL等效电路中的孤子解析表达式,并基于电路仿真构建旋磁非线性传输线的等效电路模型,系统研究关键电路参数对输出特性的影响机制。研究发现:非线性电感的饱和电流和初始电感对电路的非线性特性具有决定性影响。当饱和电流和初始电感取值较小时,输出脉冲出现前沿不完全陡化,且脉冲前沿加载有振荡波形;此时,若饱和电流和初始电感增大,输出脉冲的前沿陡化程度得到提升,即饱和电流和初始电感与电路的非线性正相关。此外,等效电路的非线性增强会导致输出频率的降低。饱和电流、饱和电感、初始电感及每级电容与输出微波频率负相关。该研究可以为旋磁非线性传输线的设计分析提供参考。
  • 图  1  GNLTL等效电路示意图

    Figure  1.  Schematic diagram of GNLTL equivalent circuit

    图  2  仿真输出波形与实验波形对比及仿真输出频率分布

    Figure  2.  Comparison of simulation output waveform and experimental waveform and simulation output frequency distribution

    图  3  饱和电流对非线性电感随电流变化的曲线的影响

    Figure  3.  Effect of saturation current on the curve of nonlinear inductance with current variation

    图  4  饱和电流分别设置为15 A及45 A时,对比不同输入脉冲幅值GNLTL的输出波形

    Figure  4.  When the saturation current is set to 15 A and 45 A, respectively, the output waveforms of GNLTL with different input pulse amplitudes are compared.

    图  5  输入梯形脉冲的幅值和饱和电流对GNLTL等效电路输出波形频率的影响

    Figure  5.  Influence of the amplitude and saturation current of the input trapezoidal pulse on the modulation depth and frequency of the output waveform of the GNLTL equivalent circuit

    图  6  饱和电感对GNLTL等效电路输出波形的影响

    Figure  6.  Effect of saturation inductance on the output waveform of GNLTL equivalent circuits

    图  7  初始电感对GNLTL等效电路输出波形的影响

    Figure  7.  Effect of initial inductance on the output waveform of GNLTL equivalent circuits

    图  8  初始电感对GNLTL等效电路输出波形频率的影响

    Figure  8.  Effect of the initial inductance on the modulation depth and frequency of the output waveform of the GNLTL equivalent circuit

    图  9  非线性电路的单级电容对GNLTL等效电路输出的影响

    Figure  9.  Effect of a single-stage capacitance of a nonlinear circuit on the output of a GNLTL equivalent circuit

    图  10  输入梯形脉冲的上升沿对GNLTL等效电路输出波形的影响

    Figure  10.  Effect of the rising edge of the input trapezoidal pulse on the output waveform of the GNLTL equivalent circuit

    图  11  当输入梯形脉冲上升沿为7 ns和10 ns时,不同饱和电流条件下GNLTL等效电路的输出对比

    Figure  11.  When the rising edge of the input trapezoidal pulse is 7 ns and 10 ns, the output of the GNLTL equivalent circuit under different saturation current conditions is compared.

    表  1  相关参数

    Table  1.   Relevant parameter

    $\;{ \mu _{{\rm{r}}0}} $ $\;{ \mu _{\rm{rs}}} $ ${\varepsilon _{\rm{d}}} $ ${\varepsilon _{\rm{r}}} $ ${d_{\rm{in}}} $/mm ${d_{\rm{f}}} $/mm ${d_{\rm{out}}} $/mm ${L_{\rm{t}}} $/m ${f_0} $/GHz
    116 4.4 1 14 10 16 32 0.8 1
    下载: 导出CSV

    表  2  GNLTL等效电路参数

    Table  2.   GNLTL equivalent circuit parameters

    $ {L_{n0}} $/nH $ {L_{n{\mathrm{s}}}} $/nH $ {C_n} $/pf n
    465 23 3 $20 \leqslant $
    下载: 导出CSV
  • [1] Ulmaskulov M R, Shunailov S A. Microwave generation modes of ferrite nonlinear transmission lines up to 20 GHz[J]. Journal of Applied Physics, 2021, 130: 234905. doi: 10.1063/5.0072352
    [2] Romanchenko I V, Ulmaskulov M R, Sharypov K A, et al. Four channel high power RF source with beam steering based on gyromagnetic nonlinear transmission lines[J]. Review of Scientific Instruments, 2017, 88: 054703. doi: 10.1063/1.4983803
    [3] Ulmaskulov M R, Shunailov S A, Sharypov K A, et al. Four-channel generator of 8-GHz radiation based on gyromagnetic non-linear transmitting lines[J]. Review of Scientific Instruments, 2019, 90: 064703. doi: 10.1063/1.5091075
    [4] Cui Yancheng, Meng Jin, Yuan Yuzhang, et al. Numerical analysis on the RF characteristics of the gyromagnetic nonlinear transmission lines[J]. IEEE Transactions on Plasma Science, 2022, 50(5): 1188-1197. doi: 10.1109/TPS.2022.3166898
    [5] Deng Guangjian, Huang Wenhua, Wang Xiangyu, et al. Numerical simulation method of gyromagnetic nonlinear transmission lines based on coupled solution of Maxwell and LLG equations[J]. IEEE Transactions on Plasma Science, 2023, 51(9): 2632-2640. doi: 10.1109/TPS.2023.3309660
    [6] Yamasaki F S, Schamiloglu E, Rossi J O, et al. Simulation studies of distributed nonlinear gyromagnetic lines based on LC lumped model[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 2232-2239. doi: 10.1109/TPS.2016.2556320
    [7] 铁维昊, 赵程光, 孟萃, 等. 旋磁型非线性传输线调制脉冲特性数值分析[J]. 高电压技术, 2019, 45(1): 301-309 doi: 10.13336/j.1003-6520.hve.20181229028

    Tie Weihao, Zhao Chengguang, Meng Cui, et al. Numerical analysis on modulated RF pulse characteristics of gyro-magnetic nonlinear transmission line[J]. High Voltage Engineering, 2019, 45(1): 301-309 doi: 10.13336/j.1003-6520.hve.20181229028
    [8] Yamasaki F S, Neto L P S, Rossi J O, et al. Soliton generation using nonlinear transmission lines[J]. IEEE Transactions on Plasma Science, 2014, 42(11): 3471-3477. doi: 10.1109/TPS.2014.2361487
    [9] Electrical solitons; theory, design, and applications[J]. Reference & Research Book News, 2011, 26(2).
    [10] Katayev I G, Jones D L. Electromagnetic shock waves[M]. London: Iliffe, 1966.
    [11] Kuek N S, Liew A C, Schamiloglu E, et al. Circuit modeling of nonlinear lumped element transmission lines including hybrid lines[J]. IEEE Transactions on Plasma Science, 2012, 40(10): 2523-2534. doi: 10.1109/TPS.2012.2183895
    [12] 欧朝芳, 胡颉, 佘守宪. 非线性传输线中的孤子[J]. 大学物理, 2006, 25(2): 42-45,50 doi: 10.3969/j.issn.1000-0712.2006.02.014

    Ou Chaofang, Hu Jie, She Shouxian. Solitons in nonlinear transmission lines[J]. College Physics, 2006, 25(2): 42-45,50 doi: 10.3969/j.issn.1000-0712.2006.02.014
    [13] Ricketts D S, Ham D. Electrical solitons: theory, design, and applications[M]. Boca Raton: CRC Press, 2011: 1-246.
    [14] 戚祖敏, 张军, 钟辉煌, 等. 利用非线性传输线产生高功率射频场[J]. 强激光与粒子束, 2012, 24(4): 813-817 doi: 10.3788/HP1PB20122404.0813

    Qi Zumin, Zhang Jun, Zhong Huihuang, et al. High power radio frequency field generation with nonlinear transmission lines[J]. High Power Laser and Particle Beams, 2012, 24(4): 813-817 doi: 10.3788/HP1PB20122404.0813
    [15] Bragg J W B, Dickens J C, Neuber A A. Material selection considerations for coaxial, ferrimagnetic-based nonlinear transmission lines[J]. Journal of Applied Physics, 2013, 113: 064904. doi: 10.1063/1.4792214
    [16] Rossi J O, Rizzo P N. Study of hybrid nonlinear transmission lines for high power RF generation[C]//2009 IEEE Pulsed Power Conference. 2009: 46-50.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  427
  • HTML全文浏览量:  154
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-12
  • 修回日期:  2025-09-15
  • 录用日期:  2025-09-29
  • 网络出版日期:  2025-11-29
  • 刊出日期:  2026-01-13

目录

    /

    返回文章
    返回