优先发表

优先发表栏目展示本刊经同行评议确定正式录用的文章,这些文章目前处在编校过程,尚未确定卷期及页码,但可以根据DOI进行引用。
显示方式:
强激光物理与技术
大于500 W非水冷光纤包层光剥离器
刘玙, 李敏, 黄珊, 吴文杰, 冯曦, 沈本剑, 宋华青, 陶汝茂, 王建军, 景峰
, doi: 10.11884/HPLPB202032.200182
摘要:
为实现高功率光纤包层光剥离器被动冷却,需要同时对光纤和封装壳体进行有效热管理。采用一种基于铁氟龙毛细管分段化学腐蚀光纤的制备技术,使用紫铜作为壳体材料,并通过有限元分析算法对壳体温度场进行仿真计算,对壳体各个结构参量进行优化分析,设计了满足500 W散热能力的包层光剥离器,并开展了实验验证。研究结果表明,采用铁氟龙管分段腐蚀法,包层光剥离比达到23.7 dB,光纤裸纤上的功率温升速率仅0.007 ℃/W。采用优化设计的壳体,在540 W功率注入下,包层光剥离器使用水冷冷板冷却可以连续出光,壳体最高温度58.7 ℃,使用相变冷板冷却可以单次安全出光50 s,壳体最高温度80 ℃。此研究结果可以为高功率光纤激光设计与研发提供重要参考。
中心波长1080 nm的高功率光纤光栅研制与测试
宋华青, 刘玙, 黄珊, 冯曦, 王建军, 陶汝茂
, doi: 10.11884/HPLPB202133.200181
摘要:
介绍了基于紫外光侧写和相位掩模法制作双包层光纤光栅的工艺,制作了一对中心波长1080 nm的光纤光栅,测试光谱得到其反射谱带宽分别为2 nm和1 nm。采用自制的光纤光栅搭建了一个高功率光纤振荡器,得到最高502 W的激光输出,并测试了输出激光的光谱和光束质量。
惯性约束聚变物理与技术
Z箍缩诊断系统的触发和抗干扰技术
周少彤, 黄显宾, 任晓东, 王昆仑, 徐强, 张思群
, doi: 10.11884/HPLPB202133.200200
摘要:
通过对时间关联信号的筛选、转换和延时等方法建立了用于8 MA脉冲功率装置上Z箍缩实验中诊断设备的触发网络,其输出触发信号与被测X射线之间的时间抖动小于2 ns,满足了纳秒级的诊断时间同步要求。采用屏蔽、接地等有效措施基本消除了放电产生的强电磁环境以及其它杂散信号对触发线缆和诊断设备的干扰,保证了诊断设备的正常工作和实验数据的质量。
粒子束及加速器技术
CSNS/RCS脉冲电源均匀传输线障碍点分析
翟军, 陈裕凯, 李海波, 周国仲, 沈莉
, doi: 10.11884/HPLPB202032.200107
摘要:
通过研究均匀传输线特征阻抗失配原理,发现传输电缆特征阻抗失配会导致负载终端励磁电流幅值发生畸变。对电源主电路关键参数进行分析,发现均匀传输线匹配阻抗失配会造成磁铁处励磁电流幅值变小,上升时间变短。建立均匀传输线障碍点等效模型,推导出脉冲电源传输线障碍点处反射系数,对串联电阻和并联电阻障碍点深入分析,发现传输线特征阻抗失配,会导致匹配负载处有功功率减小。最后通过高压电缆被击穿故障使其得以验证。
基于嵌入式EPICS的中子监测仪研制
朱文超, 林汉尚, 周泽然, 蒋诗平
, doi: 10.11884/HPLPB202032.200168
摘要:
针对合肥光源(HLS-Ⅱ)辐射防护与安全需求,且合肥光源的控制系统是基于EPICS架构,为减少辐射监测系统中间的环节,提高合肥光源人身安全联锁可靠性,研制了基于嵌入式EPICS控制系统的中子监测仪。中子监测仪的关键部件-探测器选用BF3针对合肥光源(HLS-Ⅱ)辐射防护与安全需求,研制了基于嵌入式EPICS的中子监测仪,用于场所与环境辐射场中子的监测。合肥光源的控制系统是基于EPICS架构,为减少辐射监测系统中间的环节,提高合肥光源人身安全联锁可靠性,研制了基于嵌入式EPICS控制系统的中子监测仪。中子监测仪的关键部件-探测器选用BF3正比计数管,通过对正比计数管产生的微弱电信号加2 kV的正高压偏置,交流耦合介入前置放大器放大,后输出固定宽度的脉冲信号。信号由CORTEX-M3电路计数,后经CORTEX-A8电路处理后将数据发布到局域网。利用镅铍中子源和合肥光源现场辐射环境对所研制的监测仪性能进行了初步测试,结果表明,该监测仪达到设计要求,可用于中子监测。
超导腔垂直测试数字化自激励环路研制
冯立文, 王芳, 林林, 郝建奎
, doi: 10.11884/HPLPB202032.200216
摘要:
介绍北京大学垂直测试系统的数字化自激励环路系统,重点分析了实际测试中避免多单元(cell)超导腔模式串扰的方法以及偏离四倍频采样对信号幅度和相位的影响。该系统运行稳定可靠,可有效区分1.3 GHz 9-cell超导腔\begin{document}$ {\rm{{\text{π}}}} $\end{document}模与\begin{document}$ 8{\rm{{\text{π}}}}/9 $\end{document}模,解决了多cell超导腔测试中模式串扰问题。分析了超导腔自激励环路在垂直测试中的应用,介绍了北京大学垂直测试系统的数字化自激励环路,采用上下变频方案的射频前端和包括有限脉冲响应滤波器的数字算法,系统简洁扩展性强。重点分析了实际测试中避免多cell超导腔模式串扰的方法以及偏离四倍频采样对信号幅度和相位的影响。在多种不同频率超导腔的垂直测试中该系统运行稳定可靠,可有效区分1.3 GHz 9-cell超导腔\begin{document}$ {\text{π}} $\end{document}模与\begin{document}$ 8{\rm{{\text{π}}}}/9 $\end{document}模,解决了多cell超导腔测试中模式串扰问题。
S波段HYBRID聚束-加速结构的样机研制
高斌, 裴士伦, 王辉, 赵世琦, 池云龙
, doi: 10.11884/HPLPB202133.200162
摘要:
Hybrid聚束-加速结构是把驻波预聚束器、行波聚束器和标准加速管集成到一起的新型RF结构。简述了对S波段Hybrid聚束-加速结构样机的束流动力学优化和微波设计结果,解释了Hybrid结构导致发射度增长的原因,对此样机进行了射频低功率测试。样机的冷测结果与RF设计结果一致性很好。在冷测频率2 855.21 MHz处,实测S11小于−45 dB,腔间相移偏差小于±2°,VSWR≤1.2对应的带宽大于5 MHz,轴向场分布完全满足动力学要求。
高功率微波技术
波导型高功率微波输能窗的研究进展
张雪, 王滔, 俞倩倩, 王勇
, doi: 10.11884/HPLPB202133.200257
摘要:
波导型高功率微波输能窗是高功率速调管和高能粒子加速器的关键部件,输出窗高频击穿是引起高功率速调管失效的一个重要因素。综述了国内外电真空领域波导型输能窗的研究进展,介绍了传统盒型窗的研究现状、工艺要求和击穿机理;介绍了锥型窗、行波窗、复合模窗以及过模窗等新型输能窗的设计特点,给出了改变窗片材料属性、改变窗片表面形态、窗片边缘倒角、外置直流电场/直流磁场、改变信号波形等击穿抑制技术的研究进展。
Q波段宽频带线性化器设计
李宝建, 瞿波, 夏雷, 韩飞
, doi: 10.11884/HPLPB202133.200206
摘要:
当前我国Q/V频段的低轨卫星互联网项目正在大力开展,宽带通信正在逐步发展。而国内相关线性化技术一般局限于较窄频带,相关研究尚不成熟。因此尽快研究设计宽频带线性化器十分有必要。采用适用于空间环境的模拟预失真技术,设计出针对卫星通信所用的行波管功率放大器(TWTA)的Q波段线性化器。其利用新型微带传输结构,结合肖特基二极管,可在毫米波频段实现超宽瞬时频带的线性化。在38~43 GHz(5 GHz)的瞬时频带内对TWTA的幅度失真以及相位失真有着很好的改善。线性化器在输入功率为−17~13 dBm的范围内,频带内幅度增益约为4.8~7.2 dB,相位扩张约为70°~88°。相对其他同类型线性化器,此线性化器对应频率较高,且可在很宽的瞬时频带内对TWTA实现比较稳定的线性化。
脉冲功率技术
自触发驱动的全固态Marx发生器
饶俊峰, 李恩成, 王永刚, 姜松, 李孜
, doi: 10.11884/HPLPB202133.200223
摘要:
随着全固态高压脉冲发生器在材料改性、生物医学和工业等领域上的广泛应用,全固态脉冲发生器正朝着小型化、智能化和模块化方向发展。为了进一步减小电源的体积、降低成本,提出了一种自触发驱动的正极性全固态Marx发生器的拓扑。只需提供一路隔离信号控制一级放电开关管的导通和关断,通过级间电容对相邻级的放电管门极自动充电和放电,使其依次导通和关断。这种拓扑使得Marx发生器中的多个开关管的驱动电路简单很多,无需提供隔离供电的多路驱动电源,且避免了开关的动态、静态均压问题。基于这种拓扑搭建了一台17级的正极性Marx发生器样机,且电压幅值和脉宽都连续可调,在10 kΩ纯阻性负载上输出10 kV、重复频率100 Hz的正极性高压脉冲,脉冲前沿约为328 ns。样机体积小巧、工作稳定,验证了该方案的可行性。
前沿技术与交叉科学
金属面曝光选区激光熔化原理装置及试验研究
王晨光, 沈显峰, 王国伟, 吴华玲, 吴鸿飞, 王开甲, 陈金明
, doi: 10.11884/HPLPB202133.200221
摘要:
与点扫描方式相比,面曝光选区激光熔化因具有成形效率高、残余应力水平低等优势,而成为极具发展前景的新一代选区激光熔化增材制造技术的发展方向。利用波长为915 nm的二极管连续激光器作为光源,结合电寻址反射式纯相位液晶空间光调制器,搭建了新一代面曝光选区激光熔化增材制造原理装置平台。获得了"○"形样式的面光斑曝光,基于光敏纸和低熔点金属粉末材料进行面曝光熔化成形并获得了样品,实现了面曝光选区激光熔化的原理性实验验证。