留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

兆瓦级回旋管电子注性能及注-波互作用模拟分析

刘巧 吕游 陆瑞琪 赵其祥 曾旭 张亦弛 冯进军

刘巧, 吕游, 陆瑞琪, 等. 兆瓦级回旋管电子注性能及注-波互作用模拟分析[J]. 强激光与粒子束, 2026, 38: 023001. doi: 10.11884/HPLPB202638.250129
引用本文: 刘巧, 吕游, 陆瑞琪, 等. 兆瓦级回旋管电子注性能及注-波互作用模拟分析[J]. 强激光与粒子束, 2026, 38: 023001. doi: 10.11884/HPLPB202638.250129
Liu Qiao, Lü You, Lu Ruiqi, et al. Simulation analysis of electron beam performance and beam-wave interaction in megawatt-class gyrotron[J]. High Power Laser and Particle Beams, 2026, 38: 023001. doi: 10.11884/HPLPB202638.250129
Citation: Liu Qiao, Lü You, Lu Ruiqi, et al. Simulation analysis of electron beam performance and beam-wave interaction in megawatt-class gyrotron[J]. High Power Laser and Particle Beams, 2026, 38: 023001. doi: 10.11884/HPLPB202638.250129

兆瓦级回旋管电子注性能及注-波互作用模拟分析

doi: 10.11884/HPLPB202638.250129
基金项目: 国家自然科学基金项目(62361019); 广西电子信息材料构效关系重点实验室项目(AD25069070)
详细信息
    作者简介:

    刘 巧,joeliuu2@gmail.com

    通讯作者:

    吕 游,zxqi@guet.edu.cn

  • 中图分类号: TN129

Simulation analysis of electron beam performance and beam-wave interaction in megawatt-class gyrotron

  • 摘要: 在考虑不同电子注性能(速度离散、电子注厚度、空间电荷效应、起振过程、单/双阳极结构)情况下,建立了完善的时域多模自洽非线性注-波互作用模型。以自研的兆瓦级170 GHz、TE25,10模式工作的回旋管为研究对象,系统分析了高频腔结构参数变化、起振电流、单/双阳极电子注电压调制及不同速度和电子注离散下的模式竞争情况。数值模拟研究表明:双阳极调制方式能明显抑制模式竞争,在电子注电压80 kV、电流40 A、磁场6.72 T、横纵速度比1.3的工作条件下,可实现1.35 MW输出功率和42.2%的互作用效率。
  • 图  1  互作用高频结构及主模的归一化电场幅值分布

    Figure  1.  Interaction circuit and normalized electric field amplitude distribution of the main mode

    图  2  170 GHz、TE25,10模式回旋管高频腔体内主模的相位分布

    Figure  2.  Phase distribution of the main mode in the high-frequency cavity of a 170 GHz TE25,10 mode gyrotron

    图  3  腔体谐振频率和衍射Q值随着入口段倾角变化的关系

    Figure  3.  Relationship between the resonant frequency of the cavity and diffractive quality factor Qdiff with the variation of the input section inclination angle

    图  4  腔体谐振频率和衍射Q值随着出口段倾角变化的关系

    Figure  4.  Relationship between the resonant frequency of the cavity and diffractive quality factor Qdiff with the variation of the output section inclination angle

    图  5  主模TE25,10及其附近主要竞争模式的起振电流随磁场变化情况

    Figure  5.  Variation of the starting current of the main mode TE25,10 and its neighboring competing modes with the magnetic field

    图  6  单阳极和双阳极电子枪结构示意图

    Figure  6.  Structural diagrams of single-anode and dual-anode electron guns

    图  7  不同工作磁场下输出功率与互作用时间关系

    Figure  7.  Output power varied with interaction time under different magnetic field

    图  8  不同模式输出功率与磁场的关系当电压为80 kV,电流为40 A,速度比1.3,$ {R}_{{\mathrm{g}}} $= 7.414 mm

    Figure  8.  Relationship between output power and magnetic field when the voltage is 80 kV, current is 40 A, $ \alpha $ is 1.3, $ {R}_{{\mathrm{g}}} $= 7.414 mm

    图  9  模拟阴极电压与调制极电压在同一时刻达到稳定状态时,电压和调制电压随时间的变化

    Figure  9.  Simulated cathode voltage and modulation electrode voltage reaching stability simultaneously

    图  10  输出功率与互作用时间关系

    Figure  10.  Relationship between output power and interaction time

    图  11  电压和调制电压随时间的变化。

    Figure  11.  Simulated variation of cathode voltage and modulation electrode voltage

    图  12  不同调制状态下,输出功率与互作用时间关系,其中磁场为6.72 T,阴极电压为80 kV,电流为40 A,速度比为1.3,$ {R}_{{\mathrm{g}}} $= 7.414 mm

    Figure  12.  Relationship between output power and interaction time under different modulation conditions when magnetic field is 6.72 T, cathode voltage is 80 kV, current is 40 A, $ \alpha $ is 1.3, $ {R}_{{\mathrm{g}}} $= 7.414 mm

    图  15  电子注电压为76 kV、电流为45 A、磁场为6.71 T、横纵速度比为1.05、速度离散为10%、电子注厚度为$ \Delta R=3{R}_{{\mathrm{L}}} $工作条件下注-波互作用结果

    Figure  15.  Beam-wave interaction results when magnetic field: 6.71 T, cathode voltage: 76 kV, current: 42 A, velocity ratio: 1.05, $ \delta {{v}}_{\mathrm{t}}=10\mathrm{{\text{%}} } $, $ \Delta R=3{R}_{{\mathrm{L}}} $

    图  13  170 GHz 兆瓦级回旋管实物图

    Figure  13.  Photograph of 170 GHz, megawatt-class gyrotron

    图  14  170 GHz, 兆瓦级回旋管测试结果

    Figure  14.  Tested results of 170 GHz, megawatt-class gyrotron

    表  1  170 GHz TE25,10回旋管高频腔体的相关参数

    Table  1.   Relevant parameters of 170 GHz TE25,10 gyrotron high-frequency cavity

    $ {{R}}_{\rm{in}} $ $ {{R}}_{\rm{m}} $ $ {{R}}_{\rm{out}} $ $ {{L}}_{{1}} $ $ {{L}}_{{2}} $ $ {{R}}_{{1}} $ $ {{R}}_{{2}} $ $ {{R}}_{{3}} $ $ {{R}}_{{4}} $ $ {\theta }/({^{\circ}}) $ $ {\beta }/({^{\circ}}) $ $ {{L}}_{{3}} $ $ {\sigma } $/($ {{\rm{S}}}\cdot {\rm{m}}^{-{1}} $) $ {{Q}}_{\rm{diff}} $ $ {{Q}}_{\rm{ohm}} $ $ {{Q}}_{\rm{t}} $
    9.6$ {\lambda } $ 10.1$ \lambda $ 10.8$ \lambda $ 4.1$ \lambda $ $ 7.7\lambda $ 0 $ 11.3\lambda $ $ 11.3\lambda $ 0 5 3 $ 5.6\lambda $ 1.5$ \times {10}^{7} $ 1630 47725 1576
    下载: 导出CSV

    表  2  不同位置倒角半径时,腔体谐振频率$ \boldsymbol{f} $与衍射品质因数$ {\boldsymbol{Q}}_{\boldsymbol{d}\boldsymbol{i}\boldsymbol{f}\boldsymbol{f}} $

    Table  2.   Resonant frequency f and diffractive quality factor Qdiff at different fillet radius positions

    No. $ {{R}}_{{1}}/{\lambda } $ $ {{R}}_{{2}}/{\lambda } $ $ {{R}}_{{3}}/{\lambda } $ $ {{R}}_{{4}}/{\lambda } $ $ {f} $/GHz $ {{Q}}_{\rm{diff}} $
    1 0 0 0 0 169.41937 1681
    2 28.3 0 0 0 169.4197 1675.8
    2 0 5.7 0 0 169.4202 1668.6
    3 0 11.3 0 0 169.4215 1648.6
    4 0 17.0 0 0 169.4237 1617.1
    5 0 0 10.0 0 169.4197 1670.0
    6 0 0 11.3 0 169.4198 1653.7
    7 0 0 17.0 0 169.4198 1626.7
    8 0 5.7 5.7 0 169.4202 1663.4
    9 0 8.5 8.5 0 169.4208 1648.1
    10 0 11.3 11.3 0 169.4200 1630.0
    11 0 14.2 14.2 0 169.4226 1601.0
    12 0 17.0 17.0 0 169.4238 1570.1
    13 0 11.3 11.3 11.3 169.4216 1631.7
    14 0 11.3 11.3 28.3 169.4217 1646.7
    15 11.3 11.3 11.3 28.3 169.4217 1646.7
    16 28.3 11.3 11.3 28.3 169.4217 1646.7
    下载: 导出CSV

    表  3  热腔计算参数

    Table  3.   Hot cavity calculation parameters

    guiding center
    radius $ {{R}}_{\rm{g}} $/mm
    beam voltage
    $ {{U}}_{\rm{b}} $/kV
    modulation voltage
    $ {{U}}_{\rm{mod}} $/kV
    voltage division
    ratio $ {\eta } $/%
    beam current
    $ {{I}}_{\rm{b}} $/A
    magnetic field
    $ {{B}}_{\rm{z}} $/T
    pitch factor
    α
    7.414 80 28.5 64 40 6.72 1.3
    下载: 导出CSV

    表  4  170 GHz TE25,10回旋管实测值与数值模拟值对比

    Table  4.   Comparison between measured and simulated values of a 170 GHz TE25,10 gyrotron

    parameter $ {{U}}_{\rm{b}} $/kV $ {{I}}_{\rm{b}} $/A $ {{B}}_{{0}} $/T $ {\alpha } $ $ \Delta {R} $/mm $ \boldsymbol{\delta }{{v}}_{\rm{t}} $ output power/kW output frequency/GHz
    measured value 76 45 6.71 1.1 / / 710 169.65
    simulated value 76 45 6.71 1.05 0.49 10% 720 169.482
    下载: 导出CSV
  • [1] 李志良, 冯进军, 刘本田, 等. 国际热核聚变装置用回旋管的现状及技术分析[J]. 真空电子技术, 2012(2): 47-54 doi: 10.3969/j.issn.1002-8935.2012.02.011

    Li Zhiliang, Feng Jinjun, Liu Bentian, et al. Current status and technical analysis of gyrotron for fusion applications[J]. Vacuum Electronics, 2012(2): 47-54 doi: 10.3969/j.issn.1002-8935.2012.02.011
    [2] 安晨翔, 周宁, 陈坤, 等. 相对论强流电子束驱动的X波段同轴回旋管腔体设计[J]. 强激光与粒子束, 2025, 37: 073001 doi: 10.11884/HPLPB202537.250042

    An Chenxiang, Zhou Ning, Chen Kun, et al. Design of X-band coaxial gyrotron cavity driven by intense relativistic electron beam[J]. High Power Laser and Particle Beams, 2025, 37: 073001 doi: 10.11884/HPLPB202537.250042
    [3] 胡林林, 孙迪敏, 黄麒力, 等. 105/140 GHz双频兆瓦回旋管实现1.0 MW脉冲输出[J]. 强激光与粒子束, 2023, 35: 023001 doi: 10.11884/HPLPB202335.220388

    Hu Linlin, Sun Dimin, Huang Qili, et al. 1.0 MW pulse power achieved in 105/140 GHz dual-frequency MW-level gyrotron[J]. High Power Laser and Particle Beams, 2023, 35: 023001 doi: 10.11884/HPLPB202335.220388
    [4] Kariya T, Minami R, Imai T, et al. Development of high power gyrotrons for advanced fusion devices[J]. Nuclear Fusion, 2019, 59: 066009. doi: 10.1088/1741-4326/ab0e2c
    [5] Thumm M K A, Denisov G G, Sakamoto K, et al. High-power gyrotrons for electron cyclotron heating and current drive[J]. Nuclear Fusion, 2019, 59: 073001. doi: 10.1088/1741-4326/ab2005
    [6] Kariya T, Imai T, Minami R, et al. Development of over-MW gyrotrons for fusion at 14 GHz to sub-THz frequencies[J]. Nuclear Fusion, 2017, 57: 066001. doi: 10.1088/1741-4326/aa6875
    [7] Idei H, Kariya T, Imai T, et al. Fully non-inductive second harmonic electron cyclotron plasma ramp-up in the QUEST spherical tokamak[J]. Nuclear Fusion, 2017, 57: 126045. doi: 10.1088/1741-4326/aa7c20
    [8] Nakashima Y, Ichimura K, Islam M S, et al. Recent progress of divertor simulation research using the GAMMA 10/PDX tandem mirror[J]. Nuclear Fusion, 2017, 57: 116033. doi: 10.1088/1741-4326/aa7cb4
    [9] Xu Handong, Wang Xiaojie, Zhang Jian, et al. Recent progress of the development of a long pulse 140GHz ECRH system on EAST[J]. EPJ Web of Conferences, 2019, 203: 04002. doi: 10.1051/epjconf/201920304002
    [10] Erckmann V, Brand P, Braune H, et al. Electron cyclotron heating for W7-X: physics and technology[J]. Fusion Science and Technology, 2007, 52(2): 291-312. doi: 10.13182/FST07-A1508
    [11] Felch K, Blank M, Borchard P, et al. Recent ITER-relevant gyrotron tests[J]. Journal of Physics: Conference Series, 2005, 25(1): 13-23.
    [12] Dammertz G, Alberti S, Arnold A, et al. Development of a 140-GHz 1-MW continuous wave gyrotron for the W7-X stellarator[J]. IEEE Transactions on Plasma Science, 2002, 30(3): 808-818. doi: 10.1109/TPS.2002.801509
    [13] Gantenbein G, Erckmann V, Illy S, et al. 140 GHz, 1 MW CW gyrotron development for fusion applications—Progress and recent results[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(3): 320-328. doi: 10.1007/s10762-010-9749-2
    [14] Dammertz G, Alberti S, Bariou D, et al. 140 GHz high-power gyrotron development for the stellarator W7-X[J]. Fusion Engineering and Design, 2005, 74(1/4): 217-221.
    [15] Felch K, Blank M, Borchard P, et al. Long-pulse and CW tests of a 110-GHz gyrotron with an internal, quasi-optical converter[J]. IEEE Transactions on Plasma Science, 1996, 24(3): 558-569. doi: 10.1109/27.532938
    [16] Felch K, Blank M, Borchard P, et al. Operating experience on six 110 GHz, 1 MW gyrotrons for ECH applications[J]. Nuclear Fusion, 2008, 48: 054008. doi: 10.1088/0029-5515/48/5/054008
    [17] Lohr J, Cengher M, Doane J L, et al. The multiple gyrotron system on the DIII-D tokamak[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(3): 253-273. doi: 10.1007/s10762-010-9706-0
    [18] Bigot B. Progress toward ITER’s first plasma[J]. Nuclear Fusion, 2019, 59: 112001. doi: 10.1088/1741-4326/ab0f84
    [19] Oda Y, Ikeda R, Kajiwara K, et al. Development of the first ITER gyrotron in QST[J]. Nuclear Fusion, 2019, 59: 086014. doi: 10.1088/1741-4326/ab22c2
    [20] Krasilnikov A V, Abdyuhanov I M, Aleksandrov E V, et al. Progress with the ITER project activity in Russia[J]. Nuclear Fusion, 2015, 55: 104007. doi: 10.1088/0029-5515/55/10/104007
    [21] Ioannidis Z C, Rzesnicki T, Albajar F, et al. CW experiments with the EU 1-MW, 170-GHz industrial prototype gyrotron for ITER at KIT[J]. IEEE Transactions on Electron Devices, 2017, 64(9): 3885-3892. doi: 10.1109/TED.2017.2730242
    [22] Botton M, Antonsen T M, Levush B, et al. MAGY: a time-dependent code for simulation of slow and fast microwave sources[J]. IEEE Transactions on Plasma Science, 1998, 26(3): 882-892. doi: 10.1109/27.700860
    [23] 刘巧. 高功率回旋管多模自洽非线性问题研究[D]. 成都: 电子科技大学, 2020: 36-45

    Liu Qiao. Multi-mode self-consistent non-linear research on high-power gyrotron[D]. Chengdu: University of Electronic Science and Technology of China, 2020: 36-45
    [24] Liu Yinghui, Liu Qiao, Niu Xinjian, et al. Design and experiment on a 95-GHz 400 kW-level gyrotron[J]. IEEE Transactions on Electron Devices, 2021, 68(1): 434-437. doi: 10.1109/TED.2020.3036324
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  182
  • HTML全文浏览量:  101
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-29
  • 修回日期:  2025-10-06
  • 录用日期:  2025-10-29
  • 网络出版日期:  2025-12-15
  • 刊出日期:  2026-01-13

目录

    /

    返回文章
    返回