Simulation analysis of electron beam performance and beam-wave interaction in megawatt-class gyrotron
-
摘要: 在考虑不同电子注性能(速度离散、电子注厚度、空间电荷效应、起振过程、单/双阳极结构)情况下,建立了完善的时域多模自洽非线性注-波互作用模型。以自研的兆瓦级170 GHz、TE25,10模式工作的回旋管为研究对象,系统分析了高频腔结构参数变化、起振电流、单/双阳极电子注电压调制及不同速度和电子注离散下的模式竞争情况。数值模拟研究表明:双阳极调制方式能明显抑制模式竞争,在电子注电压80 kV、电流40 A、磁场6.72 T、横纵速度比1.3的工作条件下,可实现1.35 MW输出功率和42.2%的互作用效率。Abstract:
Background The gyrotron is a relativistic nonlinear device capable of generating high-power electromagnetic radiation in the millimeter-wave and terahertz frequency ranges. In most operating magnetically confined thermonuclear fusion reactors (for electron cyclotron heating and current drive, ECH&CD), high-power gyrotrons serve as the core microwave source devices for their electron cyclotron wave heating and current drive systems. For high-power gyrotrons, the high-frequency cavity must operate in a high-order whispering gallery mode to meet the power capacity requirements. However, high-order mode operation conversely introduces severe mode competition. Electron beam performance is a major factor affecting the mode competition, further limiting their efficient and stable operation, particularly in long-pulse or continuous-wave regimes. Therefore, it is essential to investigate the impact of megawatt-level gyrotron electron beam performance on beam-wave interaction.Purpose The study focuses on a self-developed megawatt-level 170 GHz gyrotron operating at TE25,10 mode, analyzing the structural parameter variations of the high-frequency cavity, the start-oscillation current, and the mode competition in single/dual-anode electron beam modulation.Method This paper comprehensively considers electron beam performance (velocity spread, beam thickness, space charge effects, oscillation startup process, single/dual-anode configuration) and establishes a sophisticated time-domain, multi-mode, multi-frequency self-consistent nonlinear beam-wave interaction model.Results Under operating conditions of 80 kV beam voltage, 40 A beam current, 6.72 T magnetic field, and a velocity ratio of 1.3, the output power reaches 1.35 MW with an interaction efficiency of 42.2%.Conclusion Numerical simulations demonstrate that the dual-anode modulation method significantly suppresses mode competition. The successful demonstration of this device establishes a foundation for further studies on higher power and higher-frequency gyrotron. -
图 12 不同调制状态下,输出功率与互作用时间关系,其中磁场为6.72 T,阴极电压为80 kV,电流为40 A,速度比为1.3,
$ {R}_{{\mathrm{g}}} $ = 7.414 mmFigure 12. Relationship between output power and interaction time under different modulation conditions when magnetic field is 6.72 T, cathode voltage is 80 kV, current is 40 A,
$ \alpha $ is 1.3,$ {R}_{{\mathrm{g}}} $ = 7.414 mm图 15 电子注电压为76 kV、电流为45 A、磁场为6.71 T、横纵速度比为1.05、速度离散为10%、电子注厚度为
$ \Delta R=3{R}_{{\mathrm{L}}} $ 工作条件下注-波互作用结果Figure 15. Beam-wave interaction results when magnetic field: 6.71 T, cathode voltage: 76 kV, current: 42 A, velocity ratio: 1.05,
$ \delta {{v}}_{\mathrm{t}}=10\mathrm{{\text{%}} } $ ,$ \Delta R=3{R}_{{\mathrm{L}}} $ 表 1 170 GHz TE25,10回旋管高频腔体的相关参数
Table 1. Relevant parameters of 170 GHz TE25,10 gyrotron high-frequency cavity
$ {{R}}_{\rm{in}} $ $ {{R}}_{\rm{m}} $ $ {{R}}_{\rm{out}} $ $ {{L}}_{{1}} $ $ {{L}}_{{2}} $ $ {{R}}_{{1}} $ $ {{R}}_{{2}} $ $ {{R}}_{{3}} $ $ {{R}}_{{4}} $ $ {\theta }/({^{\circ}}) $ $ {\beta }/({^{\circ}}) $ $ {{L}}_{{3}} $ $ {\sigma } $/($ {{\rm{S}}}\cdot {\rm{m}}^{-{1}} $) $ {{Q}}_{\rm{diff}} $ $ {{Q}}_{\rm{ohm}} $ $ {{Q}}_{\rm{t}} $ 9.6$ {\lambda } $ 10.1$ \lambda $ 10.8$ \lambda $ 4.1$ \lambda $ $ 7.7\lambda $ 0 $ 11.3\lambda $ $ 11.3\lambda $ 0 5 3 $ 5.6\lambda $ 1.5$ \times {10}^{7} $ 1630 47725 1576 表 2 不同位置倒角半径时,腔体谐振频率
$ \boldsymbol{f} $ 与衍射品质因数$ {\boldsymbol{Q}}_{\boldsymbol{d}\boldsymbol{i}\boldsymbol{f}\boldsymbol{f}} $ Table 2. Resonant frequency f and diffractive quality factor Qdiff at different fillet radius positions
No. $ {{R}}_{{1}}/{\lambda } $ $ {{R}}_{{2}}/{\lambda } $ $ {{R}}_{{3}}/{\lambda } $ $ {{R}}_{{4}}/{\lambda } $ $ {f} $/GHz $ {{Q}}_{\rm{diff}} $ 1 0 0 0 0 169.41937 1681 2 28.3 0 0 0 169.4197 1675.8 2 0 5.7 0 0 169.4202 1668.6 3 0 11.3 0 0 169.4215 1648.6 4 0 17.0 0 0 169.4237 1617.1 5 0 0 10.0 0 169.4197 1670.0 6 0 0 11.3 0 169.4198 1653.7 7 0 0 17.0 0 169.4198 1626.7 8 0 5.7 5.7 0 169.4202 1663.4 9 0 8.5 8.5 0 169.4208 1648.1 10 0 11.3 11.3 0 169.4200 1630.0 11 0 14.2 14.2 0 169.4226 1601.0 12 0 17.0 17.0 0 169.4238 1570.1 13 0 11.3 11.3 11.3 169.4216 1631.7 14 0 11.3 11.3 28.3 169.4217 1646.7 15 11.3 11.3 11.3 28.3 169.4217 1646.7 16 28.3 11.3 11.3 28.3 169.4217 1646.7 表 3 热腔计算参数
Table 3. Hot cavity calculation parameters
guiding center
radius $ {{R}}_{\rm{g}} $/mmbeam voltage
$ {{U}}_{\rm{b}} $/kVmodulation voltage
$ {{U}}_{\rm{mod}} $/kVvoltage division
ratio $ {\eta } $/%beam current
$ {{I}}_{\rm{b}} $/Amagnetic field
$ {{B}}_{\rm{z}} $/Tpitch factor
α7.414 80 28.5 64 40 6.72 1.3 表 4 170 GHz TE25,10回旋管实测值与数值模拟值对比
Table 4. Comparison between measured and simulated values of a 170 GHz TE25,10 gyrotron
parameter $ {{U}}_{\rm{b}} $/kV $ {{I}}_{\rm{b}} $/A $ {{B}}_{{0}} $/T $ {\alpha } $ $ \Delta {R} $/mm $ \boldsymbol{\delta }{{v}}_{\rm{t}} $ output power/kW output frequency/GHz measured value 76 45 6.71 1.1 / / 710 169.65 simulated value 76 45 6.71 1.05 0.49 10% 720 169.482 -
[1] 李志良, 冯进军, 刘本田, 等. 国际热核聚变装置用回旋管的现状及技术分析[J]. 真空电子技术, 2012(2): 47-54 doi: 10.3969/j.issn.1002-8935.2012.02.011Li Zhiliang, Feng Jinjun, Liu Bentian, et al. Current status and technical analysis of gyrotron for fusion applications[J]. Vacuum Electronics, 2012(2): 47-54 doi: 10.3969/j.issn.1002-8935.2012.02.011 [2] 安晨翔, 周宁, 陈坤, 等. 相对论强流电子束驱动的X波段同轴回旋管腔体设计[J]. 强激光与粒子束, 2025, 37: 073001 doi: 10.11884/HPLPB202537.250042An Chenxiang, Zhou Ning, Chen Kun, et al. Design of X-band coaxial gyrotron cavity driven by intense relativistic electron beam[J]. High Power Laser and Particle Beams, 2025, 37: 073001 doi: 10.11884/HPLPB202537.250042 [3] 胡林林, 孙迪敏, 黄麒力, 等. 105/140 GHz双频兆瓦回旋管实现1.0 MW脉冲输出[J]. 强激光与粒子束, 2023, 35: 023001 doi: 10.11884/HPLPB202335.220388Hu Linlin, Sun Dimin, Huang Qili, et al. 1.0 MW pulse power achieved in 105/140 GHz dual-frequency MW-level gyrotron[J]. High Power Laser and Particle Beams, 2023, 35: 023001 doi: 10.11884/HPLPB202335.220388 [4] Kariya T, Minami R, Imai T, et al. Development of high power gyrotrons for advanced fusion devices[J]. Nuclear Fusion, 2019, 59: 066009. doi: 10.1088/1741-4326/ab0e2c [5] Thumm M K A, Denisov G G, Sakamoto K, et al. High-power gyrotrons for electron cyclotron heating and current drive[J]. Nuclear Fusion, 2019, 59: 073001. doi: 10.1088/1741-4326/ab2005 [6] Kariya T, Imai T, Minami R, et al. Development of over-MW gyrotrons for fusion at 14 GHz to sub-THz frequencies[J]. Nuclear Fusion, 2017, 57: 066001. doi: 10.1088/1741-4326/aa6875 [7] Idei H, Kariya T, Imai T, et al. Fully non-inductive second harmonic electron cyclotron plasma ramp-up in the QUEST spherical tokamak[J]. Nuclear Fusion, 2017, 57: 126045. doi: 10.1088/1741-4326/aa7c20 [8] Nakashima Y, Ichimura K, Islam M S, et al. Recent progress of divertor simulation research using the GAMMA 10/PDX tandem mirror[J]. Nuclear Fusion, 2017, 57: 116033. doi: 10.1088/1741-4326/aa7cb4 [9] Xu Handong, Wang Xiaojie, Zhang Jian, et al. Recent progress of the development of a long pulse 140GHz ECRH system on EAST[J]. EPJ Web of Conferences, 2019, 203: 04002. doi: 10.1051/epjconf/201920304002 [10] Erckmann V, Brand P, Braune H, et al. Electron cyclotron heating for W7-X: physics and technology[J]. Fusion Science and Technology, 2007, 52(2): 291-312. doi: 10.13182/FST07-A1508 [11] Felch K, Blank M, Borchard P, et al. Recent ITER-relevant gyrotron tests[J]. Journal of Physics: Conference Series, 2005, 25(1): 13-23. [12] Dammertz G, Alberti S, Arnold A, et al. Development of a 140-GHz 1-MW continuous wave gyrotron for the W7-X stellarator[J]. IEEE Transactions on Plasma Science, 2002, 30(3): 808-818. doi: 10.1109/TPS.2002.801509 [13] Gantenbein G, Erckmann V, Illy S, et al. 140 GHz, 1 MW CW gyrotron development for fusion applications—Progress and recent results[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(3): 320-328. doi: 10.1007/s10762-010-9749-2 [14] Dammertz G, Alberti S, Bariou D, et al. 140 GHz high-power gyrotron development for the stellarator W7-X[J]. Fusion Engineering and Design, 2005, 74(1/4): 217-221. [15] Felch K, Blank M, Borchard P, et al. Long-pulse and CW tests of a 110-GHz gyrotron with an internal, quasi-optical converter[J]. IEEE Transactions on Plasma Science, 1996, 24(3): 558-569. doi: 10.1109/27.532938 [16] Felch K, Blank M, Borchard P, et al. Operating experience on six 110 GHz, 1 MW gyrotrons for ECH applications[J]. Nuclear Fusion, 2008, 48: 054008. doi: 10.1088/0029-5515/48/5/054008 [17] Lohr J, Cengher M, Doane J L, et al. The multiple gyrotron system on the DIII-D tokamak[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(3): 253-273. doi: 10.1007/s10762-010-9706-0 [18] Bigot B. Progress toward ITER’s first plasma[J]. Nuclear Fusion, 2019, 59: 112001. doi: 10.1088/1741-4326/ab0f84 [19] Oda Y, Ikeda R, Kajiwara K, et al. Development of the first ITER gyrotron in QST[J]. Nuclear Fusion, 2019, 59: 086014. doi: 10.1088/1741-4326/ab22c2 [20] Krasilnikov A V, Abdyuhanov I M, Aleksandrov E V, et al. Progress with the ITER project activity in Russia[J]. Nuclear Fusion, 2015, 55: 104007. doi: 10.1088/0029-5515/55/10/104007 [21] Ioannidis Z C, Rzesnicki T, Albajar F, et al. CW experiments with the EU 1-MW, 170-GHz industrial prototype gyrotron for ITER at KIT[J]. IEEE Transactions on Electron Devices, 2017, 64(9): 3885-3892. doi: 10.1109/TED.2017.2730242 [22] Botton M, Antonsen T M, Levush B, et al. MAGY: a time-dependent code for simulation of slow and fast microwave sources[J]. IEEE Transactions on Plasma Science, 1998, 26(3): 882-892. doi: 10.1109/27.700860 [23] 刘巧. 高功率回旋管多模自洽非线性问题研究[D]. 成都: 电子科技大学, 2020: 36-45Liu Qiao. Multi-mode self-consistent non-linear research on high-power gyrotron[D]. Chengdu: University of Electronic Science and Technology of China, 2020: 36-45 [24] Liu Yinghui, Liu Qiao, Niu Xinjian, et al. Design and experiment on a 95-GHz 400 kW-level gyrotron[J]. IEEE Transactions on Electron Devices, 2021, 68(1): 434-437. doi: 10.1109/TED.2020.3036324 -
下载:










