Multi-physical field coupling of C-band photocathode electron gun
-
摘要: C波段光阴极微波电子枪是南方先进光源自由电子激光加速器的关键设备。针对电子枪在高功率运行下,因腔体内表面微波电磁损耗引起温升,进而导致腔体结构受热形变和谐振频率漂移的问题,通过多物理场耦合分析方法探究其内在机理,基于COMSOL Multiphysics®仿真平台构建电磁-热-结构耦合模型,首先通过高频电磁场仿真,得到真空腔体5.712 GHz的设计谐振频率;继而通过计算腔壁的电磁损耗功率密度建立等效边界热源模型,结合电子枪外部机械结构及冷却管路模型,采用流-固耦合方法得到真空腔体表面不均匀的温度分布;最终通过固体力学接口计算腔体几何形变分布,并使用此形变分布作为二次高频仿真的初始条件得到频率漂移结果。实现了电磁场、温度场与结构场的多物理场耦合建模,完整揭示了微波功率加载导致腔体谐振频率漂移的传递路径。该方法有效克服了传统单物理场分析在耦合效应表征方面的不足,为高精度微波腔体热-力耦合设计提供了有效的数值分析框架。Abstract:
Background The C-band photocathode electron gun is a key front-end device of the accelerator for the Southern Light Source Free-Electron Laser, whose resonant frequency stability is crucial for beam quality and long-term operation. During high-power microwave excitation, electromagnetic power loss on the inner surfaces of the resonant cavity produces non-uniform thermal loading, leading to structural deformation and subsequent resonant frequency drift, which cannot be accurately characterized by traditional single-physical-field analyses.Purpose To clarify the intrinsic mechanism of this phenomenon, a comprehensive electromagnetic–thermal–structural multi-physical field coupling model is developed based on the COMSOL Multiphysics® simulation platform.Methods First, high-frequency electromagnetic simulations are carried out to obtain the designed resonant frequency of the vacuum cavity at 5.712 GHz and to calculate the surface electromagnetic loss power density. Based on these results, an equivalent boundary heat source model is established. Combined with the external mechanical structure and cooling pipline model of the electron gun, the non-uniform temperature distribution of the cavity under realistic cooling conditions is obtained by employing a fluid–solid coupling method. Subsequently, the solid mechanics interface is used to compute the thermally induced deformation of the cavity geometry, and the deformed structure is introduced into a secondary high-frequency simulation to evaluate the resulting resonant frequency drift.Results The results reveal a clear transmission path from microwave power loading to temperature rise, structural deformation, and frequency shift, quantitatively demonstrating the strong coupling among electromagnetic, thermal, and mechanical fields.Conclusions This study realizes a complete multi-physical field coupling analysis of the C-band photocathode electron gun and provides an effective numerical framework for predicting resonant frequency drift, offering important guidance for the thermal–mechanical coupling design and frequency stability optimization of high-precision microwave cavities. -
表 1 材料热物性参数
Table 1. Thermophysical properties of materials
thermal expansion
coefficient/(W·m−1·K−1)specific heat capacity at constant
pressure/(J·kg−1·K−1)Density/
(kg·m−3)thermal conductivity/
(W·m−1·K−1)1.7×10−5 385 8960 400 -
[1] 孙进, 张玮. 中国散裂中子源: 聚焦广东高质量发展的“超级显微镜”[J]. 广东科技, 2024, 33(4): 13-15 doi: 10.3969/j.issn.1006-5423.2024.04.005Sun Jin, Zhang Wei. China Spallation Neutron Source: A super microscope' focusing on the high-quality development of Guangdong[J]. Guangdong Science & Technology, 2024, 33(4): 13-15 doi: 10.3969/j.issn.1006-5423.2024.04.005 [2] 陈和生. 中国散裂中子源与南方先进光源[J]. 中国科学院院刊, 2024, 39(9): 1583-1590 doi: 10.16418/j.issn.1000-3045.20240906001Chen Hesheng. China spallation neutron source and southern advance light source[J]. Bulletin of Chinese Academy of Sciences, 2024, 39(9): 1583-1590 doi: 10.16418/j.issn.1000-3045.20240906001 [3] 张亚新. 自由电子激光简介[J]. 大学物理实验, 1994, 7(3): 55-56Zhang Yaxin. Introduction to free electron laser[J]. Physical Experiment of College, 1994, 7(3): 55-56 [4] 陈丽芳, 方文程, 童德春, 等. C波段高梯度加速结构样机研制[J]. 真空电子技术, 2024(3): 76-79,98 doi: 10.16540/j.cnki.cn11-2485/tn.2024.03.14Chen Lifang, Fang Wencheng, Tong Dechun, et al. Development of a C-band high gradient accelerating structure prototype[J]. Vacuum Electronics, 2024(3): 76-79,98 doi: 10.16540/j.cnki.cn11-2485/tn.2024.03.14 [5] 姜世民, 陆志军, 刘星光, 等. C波段光阴极电子枪驱动激光整形研究[J]. 强激光与粒子束, 2024, 36: 104003 doi: 10.11884/HPLPB202436.240162Jiang Shimin, Lu Zhijun, Liu Xingguang, et al. Study of drive laser shaping system for C-band photocathode RF gun[J]. High Power Laser and Particle Beams, 2024, 36: 104003 doi: 10.11884/HPLPB202436.240162 [6] 刘盛进, 姜世民, 刘星光, 等. 南方先进光源C波段光阴极电子枪微波设计[J]. 强激光与粒子束, 2025, 37: 014005 doi: 10.11884/HPLPB202537.240195Liu Shengjin, Jiang Shimin, Liu Xingguang, et al. RF design of C-band photocathode electron gun for southern advanced photon source[J]. High Power Laser and Particle Beams, 2025, 37: 014005 doi: 10.11884/HPLPB202537.240195 [7] 周路人, 秦瑶, 蔡成欣. 工业微波加热腔的结构优化设计[J]. 无线互联科技, 2022, 19(23): 137-142 doi: 10.3969/j.issn.1672-6944.2022.23.042Zhou Luren, Qin Yao, Cai Chengxin. Structure optimization design of industrial microwave heating cavity[J]. Wireless Internet Technology, 2022, 19(23): 137-142 doi: 10.3969/j.issn.1672-6944.2022.23.042 [8] 周健荣, 常正则, 张新颖, 等. 166.6MHz超导腔加强筋结构的多物理场耦合仿真[J]. 低温工程, 2022(1): 23-30Zhou Jianrong, Chang Zhengze, Zhang Xinying, et al. Multi-physics field coupled simulation of 166.6 MHz superconducting cavity stiffener[J]. Cryogenics, 2022(1): 23-30 [9] Zhu X, Marchand C, Piquet O, et al. Coupled multiphysics analysis of a 4-vane RFQ accelerator under high power operation[J]. Journal of Instrumentation, 2022, 17: P03011. doi: 10.1088/1748-0221/17/03/P03011 [10] 赵博. 射频四极(RFQ)加速器多场耦合分析与冷却性能研究[D]. 兰州: 兰州理工大学, 2020Zhao Bo. Multi-field coupling analysis and cooling performance study of radio frequency quadrupole (RFQ) accelerator[D]. Lanzhou: Lanzhou University of Technology, 2020 [11] Zhang Ziyong, Ma Wei, Yuan Ning, et al. Physical design and multi-physics analysis of a 200 MHz continuous wave radio frequency quadrupole accelerator for a proton accelerator facility[J]. Journal of Instrumentation, 2023, 18: P05015. doi: 10.1088/1748-0221/18/05/P05015 [12] Ma Wei, Lu Liang, Liu Ting, et al. Three-dimensional multi-physics analysis and commissioning frequency tuning strategy of a radio-frequency quadrupole accelerator[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 866: 190-195. doi: 10.1016/j.nima.2017.06.004 [13] Schultheiss T J, Rathke J W, Ostroumov P N, et al. Rf, thermal and structural analysis of the 57.5 MHz CW RFQ for the RIA driver linac[C]//Proceedings of LINAC2002. 2002: 470-472. [14] Wu Xi, Yuan Ping, He Yuan, et al. Thermal analysis of DTL in the SSC-LINAC[J]. Chinese Physics C, 2011, 35(10): 952-954. doi: 10.1088/1674-1137/35/10/012 [15] Joshi S C, Paramonov V V, Skassyrskaya A, et al. The complete 3-D coupled RF-thermal-structural -RF analysis procedure for a normal conducting accelerating structure for high intensity hadron linac[C]//21st International Linear Accelerator Conference. 2002: 218. [16] Hartman N, Rimmer R A. Electromagnetic, thermal, and structural analysis of RF cavities using ANSYS[C]//PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No. 01CH37268). 2001: 912-914. [17] Kutsaev S V, Mustapha B, Ostroumov P N, et al. Design and multiphysics analysis of a 176 MHz continuous-wave radio-frequency quadrupole[J]. Physical Review Special Topics-Accelerators and Beams, 2014, 17: 072001. doi: 10.1103/PhysRevSTAB.17.072001 [18] Liu Huachang, Ouyang Huafu. Thermal analysis and water-cooling design of the CSNS MEBT 324 MHz buncher cavity[J]. Chinese Physics C, 2008, 32(4): 280-284. doi: 10.1088/1674-1137/32/4/008 [19] Liu Huachang, Peng Jun, Ruan Yufang, et al. Thermal analysis for the high duty cycle PIMS accelerator[J]. Chinese Physics C, 2010, 34(7): 1005-1008. doi: 10.1088/1674-1137/34/7/014 [20] Peng Zhaohua. Thermal calculation and design of the RFQ cavity[C]//Proceedings of the Second Asian Particle Accelerator Conference. 2001: 188-189. [21] Zeng Jie, Du Lei, Guan Xialing, et al. Cooling design for the FRIB RFQ cavity at Michigan state university[C]//Proceedings of the 5th International Particle Accelerator Conference. 2014. [22] Sharma N K, Joshi S C, Kumar N. Thermal-induced frequency detuning of 350 MHz RFQ structure[C]//Asian Particle Accelerator Conference (APAC-2007). 2007: 256-258. [23] Payne K, Xu K, Choi J H, et al. Multiphysics analysis of plasma-based tunable absorber for high-power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 7624-7636. doi: 10.1109/TAP.2021.3070088 [24] Zhang Haoxuan, Zhou Liang, Zhao Zhenguo, et al. Parallel multiphysics simulation for characterizing performance degradation of RF components[C]//2019 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO). 2019: 1-4. [25] Xiao Wensheng, Tan Liping, Cui Junguo, et al. A novel thermal analysis method based on a multi-physics two-way coupled method and its application to submersible permanent magnet synchronous motors[J]. Electronics, 2023, 12: 1155. doi: 10.3390/electronics12051155 [26] COMSOL. COMSOL documentation[EB/OL]. [2024]. https://doc.comsol.com/6.3/docserver/#!/com.comsol.help.comsol/helpdesk/helpdesk.html. [27] Zhao Bo, Chen Shuping, Zhu Tieming, et al. The design and fabrication of 81.25 MHz RFQ for low energy accelerator facility[J]. Nuclear Engineering and Technology, 2019, 51(2): 556-560. doi: 10.1016/j.net.2018.10.003 [28] 曾加. CW RFQ加速器水冷分析与设计[D]. 北京: 清华大学, 2015Zeng Jia. Water-cooling analysis and design of CW RFQ accelerator[D]. Beijing: Tsinghua University, 2015 [29] Shengen Sheet Metal. Copper Sheet Metal Materials[EB/OL]. [2025]. https://shengenfab.com/en_gb/Copper/. -
下载: