留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

C波段光阴极微波电子枪多物理场耦合研究

刘卓勋 刘盛进 陈卫东 黄子欣 杨喆 曹秀霞 吕永佳 姜世民 刘星光 秦靖 李晓

刘卓勋, 刘盛进, 陈卫东, 等. C波段光阴极微波电子枪多物理场耦合研究[J]. 强激光与粒子束, 2026, 38: 024004. doi: 10.11884/HPLPB202638.250318
引用本文: 刘卓勋, 刘盛进, 陈卫东, 等. C波段光阴极微波电子枪多物理场耦合研究[J]. 强激光与粒子束, 2026, 38: 024004. doi: 10.11884/HPLPB202638.250318
Liu Zhuoxun, Liu Shengjin, Chen Weidong, et al. Multi-physical field coupling of C-band photocathode electron gun[J]. High Power Laser and Particle Beams, 2026, 38: 024004. doi: 10.11884/HPLPB202638.250318
Citation: Liu Zhuoxun, Liu Shengjin, Chen Weidong, et al. Multi-physical field coupling of C-band photocathode electron gun[J]. High Power Laser and Particle Beams, 2026, 38: 024004. doi: 10.11884/HPLPB202638.250318

C波段光阴极微波电子枪多物理场耦合研究

doi: 10.11884/HPLPB202638.250318
基金项目: 国家自然科学基金项目(11875271); 中国科学院高能物理研究所创新项目 (E3545AU2)
详细信息
    作者简介:

    刘卓勋,liuzhuoxun@foxmail.com

    通讯作者:

    刘盛进,liusj@ihep.ac.cn

  • 中图分类号: TL503.2

Multi-physical field coupling of C-band photocathode electron gun

  • 摘要: C波段光阴极微波电子枪是南方先进光源自由电子激光加速器的关键设备。针对电子枪在高功率运行下,因腔体内表面微波电磁损耗引起温升,进而导致腔体结构受热形变和谐振频率漂移的问题,通过多物理场耦合分析方法探究其内在机理,基于COMSOL Multiphysics®仿真平台构建电磁-热-结构耦合模型,首先通过高频电磁场仿真,得到真空腔体5.712 GHz的设计谐振频率;继而通过计算腔壁的电磁损耗功率密度建立等效边界热源模型,结合电子枪外部机械结构及冷却管路模型,采用流-固耦合方法得到真空腔体表面不均匀的温度分布;最终通过固体力学接口计算腔体几何形变分布,并使用此形变分布作为二次高频仿真的初始条件得到频率漂移结果。实现了电磁场、温度场与结构场的多物理场耦合建模,完整揭示了微波功率加载导致腔体谐振频率漂移的传递路径。该方法有效克服了传统单物理场分析在耦合效应表征方面的不足,为高精度微波腔体热-力耦合设计提供了有效的数值分析框架。
  • 图  1  C波段微波电子枪结构

    Figure  1.  Structure of C-band photocathode electron gun

    图  2  C波段光阴极电子枪腔体冷却耦合传热模型

    Figure  2.  Cooling coupled heat transfer model of C-band photocathode electron gun

    图  3  C波段光阴极电子枪腔体谐振频率

    Figure  3.  Eigenfrequency of C-band photocathode electron gun

    图  4  C波段光阴极电子枪腔体内表面温度分布和形变分布

    Figure  4.  Surface temperature distribution and displacement distribution within RF gun cavity

    图  5  水温对腔体温度、形变及频率的影响

    Figure  5.  Effects of water temperature on cavity temperature, displacement and frequency

    图  6  水流速对腔体温度、形变及频率的影响

    Figure  6.  Effects of flow rate on cavity temperature, displacement and frequency

    图  7  占空比对腔体温度、形变及频率的影响

    Figure  7.  Effects of duty cycle on cavity temperature, displacement and frequency

    表  1  材料热物性参数

    Table  1.   Thermophysical properties of materials

    thermal expansion
    coefficient/(W·m−1·K−1)
    specific heat capacity at constant
    pressure/(J·kg−1·K−1)
    Density/
    (kg·m−3)
    thermal conductivity/
    (W·m−1·K−1)
    1.7×10−5 385 8960 400
    下载: 导出CSV

    表  2  各类腔体频漂对比

    Table  2.   Values of frequency drifts of various cavities

    cavity type operating frequency/MHz frequency drift value/MHz
    C-band photocathode electron gun 5712.00 −0.57
    RFQ[10] 81.25 −0.25~−0.40
    DTL[14] 350.00 −0.30~−0.50
    166.6 MHz superconducting cavity[8] 166.60 −0.20~−0.35
    下载: 导出CSV
  • [1] 孙进, 张玮. 中国散裂中子源: 聚焦广东高质量发展的“超级显微镜”[J]. 广东科技, 2024, 33(4): 13-15 doi: 10.3969/j.issn.1006-5423.2024.04.005

    Sun Jin, Zhang Wei. China Spallation Neutron Source: A super microscope' focusing on the high-quality development of Guangdong[J]. Guangdong Science & Technology, 2024, 33(4): 13-15 doi: 10.3969/j.issn.1006-5423.2024.04.005
    [2] 陈和生. 中国散裂中子源与南方先进光源[J]. 中国科学院院刊, 2024, 39(9): 1583-1590 doi: 10.16418/j.issn.1000-3045.20240906001

    Chen Hesheng. China spallation neutron source and southern advance light source[J]. Bulletin of Chinese Academy of Sciences, 2024, 39(9): 1583-1590 doi: 10.16418/j.issn.1000-3045.20240906001
    [3] 张亚新. 自由电子激光简介[J]. 大学物理实验, 1994, 7(3): 55-56

    Zhang Yaxin. Introduction to free electron laser[J]. Physical Experiment of College, 1994, 7(3): 55-56
    [4] 陈丽芳, 方文程, 童德春, 等. C波段高梯度加速结构样机研制[J]. 真空电子技术, 2024(3): 76-79,98 doi: 10.16540/j.cnki.cn11-2485/tn.2024.03.14

    Chen Lifang, Fang Wencheng, Tong Dechun, et al. Development of a C-band high gradient accelerating structure prototype[J]. Vacuum Electronics, 2024(3): 76-79,98 doi: 10.16540/j.cnki.cn11-2485/tn.2024.03.14
    [5] 姜世民, 陆志军, 刘星光, 等. C波段光阴极电子枪驱动激光整形研究[J]. 强激光与粒子束, 2024, 36: 104003 doi: 10.11884/HPLPB202436.240162

    Jiang Shimin, Lu Zhijun, Liu Xingguang, et al. Study of drive laser shaping system for C-band photocathode RF gun[J]. High Power Laser and Particle Beams, 2024, 36: 104003 doi: 10.11884/HPLPB202436.240162
    [6] 刘盛进, 姜世民, 刘星光, 等. 南方先进光源C波段光阴极电子枪微波设计[J]. 强激光与粒子束, 2025, 37: 014005 doi: 10.11884/HPLPB202537.240195

    Liu Shengjin, Jiang Shimin, Liu Xingguang, et al. RF design of C-band photocathode electron gun for southern advanced photon source[J]. High Power Laser and Particle Beams, 2025, 37: 014005 doi: 10.11884/HPLPB202537.240195
    [7] 周路人, 秦瑶, 蔡成欣. 工业微波加热腔的结构优化设计[J]. 无线互联科技, 2022, 19(23): 137-142 doi: 10.3969/j.issn.1672-6944.2022.23.042

    Zhou Luren, Qin Yao, Cai Chengxin. Structure optimization design of industrial microwave heating cavity[J]. Wireless Internet Technology, 2022, 19(23): 137-142 doi: 10.3969/j.issn.1672-6944.2022.23.042
    [8] 周健荣, 常正则, 张新颖, 等. 166.6MHz超导腔加强筋结构的多物理场耦合仿真[J]. 低温工程, 2022(1): 23-30

    Zhou Jianrong, Chang Zhengze, Zhang Xinying, et al. Multi-physics field coupled simulation of 166.6 MHz superconducting cavity stiffener[J]. Cryogenics, 2022(1): 23-30
    [9] Zhu X, Marchand C, Piquet O, et al. Coupled multiphysics analysis of a 4-vane RFQ accelerator under high power operation[J]. Journal of Instrumentation, 2022, 17: P03011. doi: 10.1088/1748-0221/17/03/P03011
    [10] 赵博. 射频四极(RFQ)加速器多场耦合分析与冷却性能研究[D]. 兰州: 兰州理工大学, 2020

    Zhao Bo. Multi-field coupling analysis and cooling performance study of radio frequency quadrupole (RFQ) accelerator[D]. Lanzhou: Lanzhou University of Technology, 2020
    [11] Zhang Ziyong, Ma Wei, Yuan Ning, et al. Physical design and multi-physics analysis of a 200 MHz continuous wave radio frequency quadrupole accelerator for a proton accelerator facility[J]. Journal of Instrumentation, 2023, 18: P05015. doi: 10.1088/1748-0221/18/05/P05015
    [12] Ma Wei, Lu Liang, Liu Ting, et al. Three-dimensional multi-physics analysis and commissioning frequency tuning strategy of a radio-frequency quadrupole accelerator[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 866: 190-195. doi: 10.1016/j.nima.2017.06.004
    [13] Schultheiss T J, Rathke J W, Ostroumov P N, et al. Rf, thermal and structural analysis of the 57.5 MHz CW RFQ for the RIA driver linac[C]//Proceedings of LINAC2002. 2002: 470-472.
    [14] Wu Xi, Yuan Ping, He Yuan, et al. Thermal analysis of DTL in the SSC-LINAC[J]. Chinese Physics C, 2011, 35(10): 952-954. doi: 10.1088/1674-1137/35/10/012
    [15] Joshi S C, Paramonov V V, Skassyrskaya A, et al. The complete 3-D coupled RF-thermal-structural -RF analysis procedure for a normal conducting accelerating structure for high intensity hadron linac[C]//21st International Linear Accelerator Conference. 2002: 218.
    [16] Hartman N, Rimmer R A. Electromagnetic, thermal, and structural analysis of RF cavities using ANSYS[C]//PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No. 01CH37268). 2001: 912-914.
    [17] Kutsaev S V, Mustapha B, Ostroumov P N, et al. Design and multiphysics analysis of a 176 MHz continuous-wave radio-frequency quadrupole[J]. Physical Review Special Topics-Accelerators and Beams, 2014, 17: 072001. doi: 10.1103/PhysRevSTAB.17.072001
    [18] Liu Huachang, Ouyang Huafu. Thermal analysis and water-cooling design of the CSNS MEBT 324 MHz buncher cavity[J]. Chinese Physics C, 2008, 32(4): 280-284. doi: 10.1088/1674-1137/32/4/008
    [19] Liu Huachang, Peng Jun, Ruan Yufang, et al. Thermal analysis for the high duty cycle PIMS accelerator[J]. Chinese Physics C, 2010, 34(7): 1005-1008. doi: 10.1088/1674-1137/34/7/014
    [20] Peng Zhaohua. Thermal calculation and design of the RFQ cavity[C]//Proceedings of the Second Asian Particle Accelerator Conference. 2001: 188-189.
    [21] Zeng Jie, Du Lei, Guan Xialing, et al. Cooling design for the FRIB RFQ cavity at Michigan state university[C]//Proceedings of the 5th International Particle Accelerator Conference. 2014.
    [22] Sharma N K, Joshi S C, Kumar N. Thermal-induced frequency detuning of 350 MHz RFQ structure[C]//Asian Particle Accelerator Conference (APAC-2007). 2007: 256-258.
    [23] Payne K, Xu K, Choi J H, et al. Multiphysics analysis of plasma-based tunable absorber for high-power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 7624-7636. doi: 10.1109/TAP.2021.3070088
    [24] Zhang Haoxuan, Zhou Liang, Zhao Zhenguo, et al. Parallel multiphysics simulation for characterizing performance degradation of RF components[C]//2019 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO). 2019: 1-4.
    [25] Xiao Wensheng, Tan Liping, Cui Junguo, et al. A novel thermal analysis method based on a multi-physics two-way coupled method and its application to submersible permanent magnet synchronous motors[J]. Electronics, 2023, 12: 1155. doi: 10.3390/electronics12051155
    [26] COMSOL. COMSOL documentation[EB/OL]. [2024]. https://doc.comsol.com/6.3/docserver/#!/com.comsol.help.comsol/helpdesk/helpdesk.html.
    [27] Zhao Bo, Chen Shuping, Zhu Tieming, et al. The design and fabrication of 81.25 MHz RFQ for low energy accelerator facility[J]. Nuclear Engineering and Technology, 2019, 51(2): 556-560. doi: 10.1016/j.net.2018.10.003
    [28] 曾加. CW RFQ加速器水冷分析与设计[D]. 北京: 清华大学, 2015

    Zeng Jia. Water-cooling analysis and design of CW RFQ accelerator[D]. Beijing: Tsinghua University, 2015
    [29] Shengen Sheet Metal. Copper Sheet Metal Materials[EB/OL]. [2025]. https://shengenfab.com/en_gb/Copper/.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  221
  • HTML全文浏览量:  102
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-29
  • 修回日期:  2025-12-19
  • 录用日期:  2025-12-12
  • 网络出版日期:  2026-01-04
  • 刊出日期:  2026-01-13

目录

    /

    返回文章
    返回