留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半导体多物理效应并行计算程序JEMS-CDS-Device设计与实现

李光荣 赵振国 王卫杰 游春光 周海京

李光荣, 赵振国, 王卫杰, 等. 半导体多物理效应并行计算程序JEMS-CDS-Device设计与实现[J]. 强激光与粒子束, 2020, 32: 043201. doi: 10.11884/HPLPB202032.190264
引用本文: 李光荣, 赵振国, 王卫杰, 等. 半导体多物理效应并行计算程序JEMS-CDS-Device设计与实现[J]. 强激光与粒子束, 2020, 32: 043201. doi: 10.11884/HPLPB202032.190264
Li Guangrong, Zhao Zhenguo, Wang Weijie, et al. Design and implementation of semiconductor multi-physical parallel computing program JEMS-CDS-Device[J]. High Power Laser and Particle Beams, 2020, 32: 043201. doi: 10.11884/HPLPB202032.190264
Citation: Li Guangrong, Zhao Zhenguo, Wang Weijie, et al. Design and implementation of semiconductor multi-physical parallel computing program JEMS-CDS-Device[J]. High Power Laser and Particle Beams, 2020, 32: 043201. doi: 10.11884/HPLPB202032.190264

半导体多物理效应并行计算程序JEMS-CDS-Device设计与实现

doi: 10.11884/HPLPB202032.190264
基金项目: 科学挑战专题资助项目(TZ2018002);国家自然科学基金项目(11675022);中物院复杂电磁环境重点实验基金项目(FZ2019-001);中国工程物理研究院创新发展基金项目(2019034);国防基础科研计划项目(C1520110002)
详细信息
    作者简介:

    李光荣(1988—),男,助理研究员,从事高性能电磁计算研究,器件与电路仿真软件研发:li_guangrong@iapcm.ac.cn

  • 中图分类号: TN302

Design and implementation of semiconductor multi-physical parallel computing program JEMS-CDS-Device

  • 摘要: 针对复杂电磁环境下器件多物理效应机理研究需求,研发了半导体多物理效应并行计算程序JEMS-CDS-Device。介绍了JEMS-CDS-Device的架构设计与实现技术。程序基于非结构网格并行框架JAUMIN实现,采用有限体积法(FVM)离散,使用牛顿法全耦合求解“电-载流子输运-热”问题。程序采用“内核+算法库”形式架构,支持2维和3维非结构网格、千万自由度问题并行求解,支持物理方程、离散算法、材料物理模型等的扩展开发。
  • 图  1  插值网格与积分网格(控制体)

    Figure  1.  Interpolation grid and integral grid (control body)

    图  2  前向自动微分

    Figure  2.  Forward automatic differentiation

    图  3  积分网格(对偶网格)修正

    Figure  3.  Integral mesh (dual mesh) correction

    图  4  异质界面处的间断与算法区域处理

    Figure  4.  Discontinuity heterogeneous interface and algorithm region processing (right figure, there are two logical nodes M1 and M2 in node A)

    图  5  网格层次结构与并行构件[17]

    Figure  5.  Grid hierarchy and parallel components

    图  6  JEMS-CDS-Device主要层次

    Figure  6.  JEMS-CDS-Device

    图  7  软件模块间关系

    Figure  7.  Relationships between software modules

    图  8  3维PN净掺杂密度分布与二极管阳极V-I曲线

    Figure  8.  PN diode ’s density distribution of net doping and anode V-I curve

    图  9  2维NMOS管平衡态电势分布结果对比(电势单位:V,参考零点为无穷远)

    Figure  9.  2D NMOS equilibrium potential distribution comparison(potential unit: V, the potential reference zero is at infinity)

    图  10  2维PN管的净掺杂分布与载流子分布(正向偏压0.5 V)

    Figure  10.  Net doping and carrier distribution of 2D PN device (positive deviation 0.5 V)

    图  11  输入的波形与某时刻PIN的温度分布

    Figure  11.  Input waveform and temperature distribution of PIN (at 7.78 ns)

    表  1  DDM1非线性迭代中线性解法器典型收敛情况)

    Table  1.   Typical convergence of linear solver in DDM1 nonlinear iteration

    linear solverpreconditiontime (iterations)/s
    mesh refinement 0;
    DOF: 11 165
    mesh refinement 1;
    DOF: 43 925
    mesh refinement 2;
    DOF: 174 245
    mesh refinement 3;
    DOF: 694 085
    LU0.209 6 (1)1.065 2 (1)7.018 4 (1)50.442 3 (1)
    BiCGSTABJacobi0.131 8 (106)0.868 3 (226)7.119 6 (455)68.205 1 (1 011)
    BiCGSTABASM0.126 5 (106)0.919 0 (226)7.666 1 (455)72.558 4 (1 011)
    BiCGSTABILU0.127 6 (106)0.840 7 (226)7.020 5 (455)69.624 0 (1 011)
    GMRESBJacobi0.263 5 (448)2.358 7 (940)26.995 4 (2 548)427.814 (9 450)
    GMRESASM0.291 4 (448)2.466 6 (940)27.758 8 (2 548)462.929 (9 450)
    GMRESILU0.283 8 (448)2.311 4 (940)27.126 1 (2 548)425.375 450)
    下载: 导出CSV

    表  2  弱扩展并行测试(Basic Newton,ASM+BiCGSTAB)

    Table  2.   Weak extension parallel test (Basic Newton,ASM+BiCGSTAB)

    coresunknownsaverage iterationstime/sefficiency/%
    4 1.74×105 154 83.32 100
    16 6.94×105 353 151.70 54.9
    64 2.77×106 757 285.78 29.1
    256 1.11×107 1727 531.19 15.7
    下载: 导出CSV

    表  3  强扩展并行测试(Basic Newton,ASM+BiCGSTAB,2.771×106未知量)

    Table  3.   Strongly extended parallel test (Basic Newton,ASM+BiCGSTAB,2.771×106 Unknowns)

    corestotal time/slinear solver time/sspeedupefficiency/%
    32 470.31 228.44 1.00 100.0
    64 284.78 113.67 1.65 82.6
    128 157.90 59.20 2.98 74.5
    256 99.56 32.31 4.72 59.1
    下载: 导出CSV
  • [1] 赵振国. PIN限幅器高功率微波效应机理仿真与实验研究[D]. 绵阳: 中国工程物理研究院, 2013: 1-53.

    Zhao Zhenguo. Simulation and experimental study of high power microwave effect of PIN limiter[D]. Mianyang: China Academy of Engineering Physics, 2013: 1-53
    [2] 孟凡宝, 杨周炳, 马弘舸, 等. 高功率微波超宽带电磁脉冲技术[M]. 北京: 国防工业出版社, 2011: 178-196.

    Meng Fanbao, Yang Zhoubing, Ma Hongge, et al. High-power microwave ultra-wideband electromagnetic pulse technology[M]. Beijing: National Defense Industry Press, 2011: 178-196
    [3] 马振洋, 柴常春, 任兴荣, 等. 双极晶体管微波损伤效应与机理[J]. 物理学报, 2012, 61:075011. (Ma Zhenyang, Chai Changchun, Ren Xinrong, et al. Microwave damage effect and mechanism of bipolar transistor[J]. Acta Physica Sinica, 2012, 61: 075011
    [4] 游海龙, 蓝建春, 范菊平, 等. 高功率微波作用下热载流子引起n型金属-氧化物-半导体场效应管特性退化研究[J]. 物理学报, 2012, 61:1085011. (You Hailong, Lan Jianchun, Fan Juping, et al. Research on characteristics degradation of n-metal-oxide-semiconductor field-effect transistor induced by hot carrier effect due to high power microwave[J]. Acta Physica Sinica, 2012, 61: 1085011
    [5] 陈曦, 杜正伟, 龚克. 脉冲宽度对PIN限幅器微波脉冲热效应的影响[J]. 强激光与粒子束, 2010, 22(7):1602-1606. (Chen Xi, Du Zhengwei, Gong Ke. Effect of pulse width on thermal effect of microwave pulse on PIN limiter[J]. High Power Laser and Particle Beams, 2010, 22(7): 1602-1606 doi: 10.3788/HPLPB20102207.1602
    [6] 周怀安. 电磁脉冲对电子设备中半导体有源器件作用的研究[D]. 北京: 清华大学电子工程系, 2005: 1-32.

    Zhou Huaian. Research on the effect of electromagnetic pulses on semiconductor active devices in electronic equipment[D]. Beijing: Department of Electronic Engineering, Tsinghua University, 2005: 1-32
    [7] 陈曦, 杜正伟, 龚克. 外电路在电磁脉冲对双极型晶体管作用过程中的影响[J]. 强激光与粒子束, 2007, 19(7):1197-1202. (Chen Xi, Du Zhengwei, Gong Ke. Influence of circuit during injection of EMP into bipolar junction transistor[J]. High Power Laser and Particle Beams, 2007, 19(7): 1197-1202
    [8] 韦源, 谢红刚, 贡顶, 等. 金属氧化物半导体场效应管长期辐射效应的数值模拟[J]. 强激光与粒子束, 2013, 25(4):1031-1034. (Wei Yuan, Xie Honggang, Gong Ding. Numerical simulation of long-term radiation effects for MOSFETs[J]. High Power Laser and Particle Beams, 2013, 25(4): 1031-1034 doi: 10.3788/HPLPB20132504.1031
    [9] Kramer K M, Hitchon W N G. Semiconductor devices: A simulation approach[M]. New Jersey: Prentice Hall PTR, 1997:20-54.
    [10] 贡顶, 张相华. 半导体器件的数值模拟: GSS软件用户手册[R]. 2008: 14-150.

    Gong Ding, Zhang Xianghua. Numerical simulation of semiconductor devices: GSS software user manual[R]. 2008: 14-150
    [11] 施敏, 伍国珏, 耿莉, 等. 半导体器件物理[M]. 西安: 西安交通大学出版社, 2008:5-193.

    Shi Min, Wu Guojue, Geng Li, et al. Physics of semiconductor devices[M]. Xi’an: Xi’an Jiaotong University Press, 2008:5-193
    [12] 李荣华. 偏微分方程数值解法[M]. 北京: 高等教育出版社, 2005: 45-213.

    Li Ronghua. Numerical solution of partial differential equations[M]. Beijing: Higher Education Press, 2005:45-213
    [13] Balay S, Abhyankar S, Adams M, et al. PETSC users manual revision 3.8[R]. No. ANL-95/11 Rev 3.8, 2017: 73-129.
    [14] Speelpenning B. Compiling fast partial derivatives of functions given by algorithms[R]. UIUCDCS-R-80-1002, 1980: 8-82.
    [15] Synopsys. Sentaurus device user guide[M]. Version H, 2013: 973-986
    [16] Lin P T. Improving multigrid performance for unstructured mesh drift-diffusion simulations on 147,000 cores[J]. International Journal for Numerical Methods in Engineering, 2012, 91(9): 971-989. doi: 10.1002/nme.4315
    [17] 领域编程框架团队. 并行自适用非结构网格应用支撑软件框架JAUMIN用户指南[M]. 北京: 北京应用物理与计算数学研究所, 2015.

    Domain Programming Famework Team. Parallel self-adaptive unstructured grid application support software framework JAUMIN user guide[M]. Beijing: Institute of Applied Physics and Computational Mathematics, 2015
    [18] Liu, Qingkai, Mo Zeyao, Zhang Aiqing, et al. JAUMIN: a programming framework for large-scale numerical simulation on unstructured meshes[J]. CCF Transactions on High Performance Computing, 2019, 1(1): 35-48. doi: 10.1007/s42514-019-00001-z
    [19] http://www.caep-scns.ac.cn/JAUMIN.php[EB/OL].
    [20] 肖丽, 曹小林, 王华维, 等. 激光聚变数值模拟中的大规模数据可视分析[J]. 计算机辅助设计与图形学学报, 2014, 26(5):675-686. (Xiao Li, Cao Xiaolin, Wang Huawei, et al. Large-scale data visual analysis for numerical simulation of laser fusion[J]. Chinese Journal of Computer-Aided Design and Computer Graphics, 2014, 26(5): 675-686
    [21] http://www.caep-scns.ac.cn/TeraVAP.php[EB/OL].
    [22] 郑澎, 方维, 徐权, 等. 面向JAUMIN的并行AFT四面体网格生成[J]. 计算机科学与探索, 2018, 12(4):567-574. (Zheng Peng, Fang Wei, Xu Quan, et al. Parallel AFT tetrahedral mesh generation for JAUMIN[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(4): 567-574 doi: 10.3778/j.issn.1673-9418.1611083
    [23] http://www.caep-scns.ac.cn/SuperMesh.php[EB/OL].
    [24] Lin P T, Shadid J N, Sala M, et al. Performance of a parallel algebraic multilevel preconditioner for stabilized finite element semiconductor device modeling[J]. Journal of Computational Physics, 2009, 228(17): 6250-6267. doi: 10.1016/j.jcp.2009.05.024
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  1677
  • HTML全文浏览量:  598
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-25
  • 修回日期:  2019-12-05
  • 刊出日期:  2020-03-06

目录

    /

    返回文章
    返回