留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液电脉冲激波特性分析

吴敏干 刘毅 林福昌 刘思维 孙建军

吴敏干, 刘毅, 林福昌, 等. 液电脉冲激波特性分析[J]. 强激光与粒子束, 2020, 32: 045002. doi: 10.11884/HPLPB202032.190356
引用本文: 吴敏干, 刘毅, 林福昌, 等. 液电脉冲激波特性分析[J]. 强激光与粒子束, 2020, 32: 045002. doi: 10.11884/HPLPB202032.190356
Wu Min’gan, Liu Yi, Lin Fuchang, et al. Characteristics analysis of electrohydraulic shockwave[J]. High Power Laser and Particle Beams, 2020, 32: 045002. doi: 10.11884/HPLPB202032.190356
Citation: Wu Min’gan, Liu Yi, Lin Fuchang, et al. Characteristics analysis of electrohydraulic shockwave[J]. High Power Laser and Particle Beams, 2020, 32: 045002. doi: 10.11884/HPLPB202032.190356

液电脉冲激波特性分析

doi: 10.11884/HPLPB202032.190356
基金项目: 国家自然科学基金项目(51877095)
详细信息
    作者简介:

    吴敏干(1994—),男,硕士,从事水中高压脉冲放电机理和应用研究;wumingan@whu.edu.cn

    通讯作者:

    刘 毅(1985—),男,博士,副教授,从事脉冲功率技术及高电压与绝缘技术研究;yiliu@hust.edu.cn

  • 中图分类号: TM8

Characteristics analysis of electrohydraulic shockwave

  • 摘要:

    基于相应的数学模型来表征液电脉冲激波的产生和传播过程,搭建了液电式碎岩综合试验平台,分析了典型的激波特性的仿真和实测结果。给出了不同充电电压下液电脉冲激波特性的仿真结果,并分析了充电电压对激波特性的影响。结果表明:充电电压为11 kV时,激波的压力峰值为2.67 MPa,激波能量为27.30 J,波前时间为2.16 μs,激波加载速率为1.24 MPa/μs,电能转化为激波能量的效率为13.35%;提高电容充电电压,激波压力峰值和激波能量增大,波前时间减少,激波加载速率增加,但电能转化为激波能量的效率降低。利用建模分析的方法,可以根据放电回路参数预测液电脉冲激波特性,从而为进一步研究激波破碎岩石的形态和效果提供理论依据。

  • 图  1  液电式碎岩试验平台示意图

    Figure  1.  Schematic of experimental platform for electrohydraulic disintegration of rocks(EHDR)

    图  2  高速相机拍摄的等离子体通道图像和其圆柱形膨胀模型示意图

    Figure  2.  Image of the discharge plasma channel captured by high speed camera and the schematic of cylindrical expansion model

    图  3  液电式碎岩等效电路示意图

    Figure  3.  Schematic of equivalent circuit for EHDR

    图  4  水中高压脉冲放电典型过程

    Figure  4.  Typical process of underwater high voltage pulsed discharge

    图  5  典型的激波波形的实测和仿真结果(UC=15 kV,l=10 mm)

    Figure  5.  Measured and simulated shockwave pressure (UC=15 kV, l=10 mm)

    图  6  不同充电电压下等离子体通道电阻和量特性的仿真结果

    Figure  6.  Simulation results of plasma channel resistance and energy characteristic under different charge voltage

    图  7  等离子体通道平均电阻、通道沉积能量、激波能量和能量效率随充电电压的变化趋势

    Figure  7.  Variation trend of average plasma channel resistance (Rch), deposited energy (Ech), shockwave energy (Esw) and energy efficiency (ηsw) under different charge voltage

    图  8  不同充电电压下激波仿真波形和激波特性随充电电压的变化趋势

    Figure  8.  Simulated waveforms of shockwave under different charge voltage and variation trend of shockwave characteristics

    表  1  典型激波特性实测与仿真结果

    Table  1.   Measured and simulated results of typical shockwave characteristics

    shockwave characteristicsPpeak / MPatr /μsv / (MPa/μs)Esw/ J
    measurement 3.29 2.71 1.21 40.04
    simulation 3.31 1.74 1.90 42.46
    下载: 导出CSV
  • [1] 张瑞强, 刘少军, 胡琼. 利用脉冲功率技术开采海底富钴结壳的试验研究[J]. 强激光与粒子束, 2017, 29:065008. (Zhang Ruiqiang, Liu Shaojun, Hu Qiong. Experimental investigation of exploring marine co-rich crust using pulse power techniques[J]. High Power Laser and Particle Beams, 2017, 29: 065008
    [2] 付荣耀, 孙鹞鸿, 樊爱龙, 等. 高压电脉冲在页岩气开采中的压裂实验研究[J]. 强激光与粒子束, 2016, 28:079001. (Fu Rongyao, Sun Yaohong, Fan Ailong, et al. Research of rock fracturing based on high voltage pulse in shale gas drilling[J]. High Power Laser and Particle Beams, 2016, 28: 079001
    [3] 施逢年. 矿石的高压电脉冲预处理技术研究进展——昆士兰大学JK矿物中心10余年成果回顾[J]. 金属矿山, 2019(5):1-8. (Shi Fengnian. Progress on high voltage pulse technology used for ore pre-treatment——Overview of the research outcomes made by the Julius Kruttschnitt Mineral Research Centre of the University of Queensland in the past 10 years[J]. Metal Mine, 2019(5): 1-8
    [4] 李昌平, 契霍特金 V F, 段隆臣. 电脉冲破岩钻进技术研究进展[J]. 地质科技情报, 2018, 37(6):298-304. (Li Changping, Chikhotkin V F, Duan Longcheng. Research progress of electro pulse boring rock breaking technology[J]. Geological Science and Technology Information, 2018, 37(6): 298-304
    [5] 付荣耀, 孙鹞鸿, 刘坤, 等. 大水泥岩样的电脉冲压裂实验研究[J]. 强激光与粒子束, 2018, 30:045007. (Fu Rongyao, Sun Yaohong, Liu Kun, et al. Experimental study of fracturing under electric pulse for large cement sample[J]. High Power Laser and Particle Beams, 2018, 30: 045007
    [6] 张永民, 邱爱慈, 秦勇. 电脉冲可控冲击波煤储层增透原理与工程实践[J]. 煤炭科学技术, 2017, 45(9):79-85. (Zhang Yongmin, Qiu Aici, Qin Yong. Principle and engineering practices on coal reservoir permeability improved with electric pulse controllable shock waves[J]. Coal Science and Technology, 2017, 45(9): 79-85
    [7] Martin E A. Experimental investigation of a high-energy density, high-pressure arc plasma[J]. Journal of Applied Physics, 1960, 31(2): 255-267. doi: 10.1063/1.1735555
    [8] Sun B, Kunitomo S, Igarashi C. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water[J]. Journal of Physics D: Applied Physics, 2006, 39(17): 3814-3820. doi: 10.1088/0022-3727/39/17/016
    [9] Timoshkin I V, Fouracre R A, Given M J, et al. Hydrodynamic modelling of transient cavities in fluids generated by high voltage spark discharges[J]. Journal of Physics D: Applied Physics, 2006, 39(22): 4808-4817. doi: 10.1088/0022-3727/39/22/011
    [10] Axel W H K. Pulsed power discharges in water[D]. California: California Institute of Technology, 1996.
    [11] Liu S W, Liu Y, Lin F C, et al. Influence of plasma channel impedance model on electrohydraulic shockwave simulation[J]. Physics of Plasmas, 2019, 26: 023522. doi: 10.1063/1.5064847
    [12] 王一博. 水中等离子体声源的理论与实验研究[D]. 长沙: 国防科技大学, 2012.

    Wang Yibo. Theoretical and experimental study of the underwater plasma acoustic source[D]. Changsha: Graduate School of National University of Defense Technology, 2012
    [13] 贾少华, 赵金昌, 尹志强, 等. 基于高压电脉冲煤体增透的水激波波前时间变化规律研究[J]. 太原理工大学学报, 2015, 46(6):680-684, 690. (Jia Shaohua, Zhao Jinchang, Yin Zhiqiang, et al. Research on change laws of front time in water shock-wave based on pulsed high-voltage discharge in permeability enhancement in coal seams[J]. Journal of Taiyuan University of Technology, 2015, 46(6): 680-684, 690
    [14] 尹志强, 赵金昌, 贾少华, 等. 基于高压电脉冲的水激波加载特性的实验研究[J]. 煤炭技术, 2016, 35(6):182-185. (Yin Zhiqiang, Zhao Jinchang, Jia Shaohua, et al. Experimental study of water shock load characteristics based on high-voltage pulsed discharge[J]. Coal Technology, 2016, 35(6): 182-185
    [15] 李显东, 刘毅, 李志远, 等. 不均匀电场下水中脉冲放电观测及沉积能量对激波的影响[J]. 中国电机工程学报, 2017, 37(10):3028-3036. (Li Xiandong, Liu Yi, Li Zhiyuan, et al. Observation of underwater pulse discharge and influence of deposited energy on shock wave in non-uniform electric field[J]. Proceedings of CSEE, 2017, 37(10): 3028-3036
    [16] Li C, Duan L, Tan S, et al. Damage model and numerical experiment of high-voltage electro pulse boring in granite[J]. Energies, 2019, 12(4): 727. doi: 10.3390/en12040727
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1406
  • HTML全文浏览量:  506
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-16
  • 修回日期:  2019-12-04
  • 刊出日期:  2020-03-06

目录

    /

    返回文章
    返回