留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带电粒子加速器的基本类型及其技术实现

陈思富 黄子平 石金水

陈思富, 黄子平, 石金水. 带电粒子加速器的基本类型及其技术实现[J]. 强激光与粒子束, 2020, 32: 045101. doi: 10.11884/HPLPB202032.190424
引用本文: 陈思富, 黄子平, 石金水. 带电粒子加速器的基本类型及其技术实现[J]. 强激光与粒子束, 2020, 32: 045101. doi: 10.11884/HPLPB202032.190424
Chen Sifu, Huang Ziping, Shi Jinshui. Basic types and technological implementation of charged particle accelerators[J]. High Power Laser and Particle Beams, 2020, 32: 045101. doi: 10.11884/HPLPB202032.190424
Citation: Chen Sifu, Huang Ziping, Shi Jinshui. Basic types and technological implementation of charged particle accelerators[J]. High Power Laser and Particle Beams, 2020, 32: 045101. doi: 10.11884/HPLPB202032.190424

带电粒子加速器的基本类型及其技术实现

doi: 10.11884/HPLPB202032.190424
基金项目: 中国工程物理研究院流体物理研究所规划发展研究课题
详细信息
    作者简介:

    陈思富(1971—),博士,研究员,主要从事直线感应加速器物理及应用技术研究;csfcaep@163.com

  • 中图分类号: TL5

Basic types and technological implementation of charged particle accelerators

  • 摘要: 现代粒子加速器的发展已有100年的历史。给出了粒子加速器主要类型的简单分类图表,从粒子加速器发展过程中相关概念演变和加速器技术逻辑发展的角度,概述了粒子加速器的基本类型、基本工作原理、相应的技术实现途径以及各类加速器的典型的技术特征。
  • 图  1  带电粒子加速器的简单分类[10]

    Figure  1.  Simple classification of charged particle accelerators(modified from Ref.[10])

    图  2  高压静电场型加速器原理图

    Figure  2.  Principle of the high-voltage DC accelerators

    图  3  静电场难以实现累积加速示意图

    Figure  3.  Difficulties in accelerating repeatedly by electrostatic fields

    图  4  利用时变场实现累积加速

    Figure  4.  Repeated acceleration with time-varying electromagnetic fields

    图  5  Betatron加速原理及环形真空室示意图

    Figure  5.  Principle of the betatron and a schematic of the annular vacuum chamber

    图  6  Ising方波累积加速原理示意图

    Figure  6.  Diagram of the principle of multiple acceleration from professor G. Ising’s pioneer publication(1924)

    图  7  直线感应加速器加速原理示意图

    Figure  7.  Principle of the linear induction accelerator

    图  8  交变电压及自动稳相原理示意图

    Figure  8.  Alternating voltage and principle of phase stability

    图  9  Wideröe型驻波直线加速器结构和原理示意图[28]

    Figure  9.  A schematic of the Wideröe linac structure[28]

    图  10  圆柱形空腔中激励TM010型驻波[29]

    Figure  10.  A pillbox cavity and the TM010 mode electric and magnetic fields in it[29]

    图  11  Alvarez型驻波直线加速器结构和原理示意图[9]

    Figure  11.  A schematic of the Alvarez drift-tube linac structure[9]

    图  12  IH-DTL结构示意图[31]

    Figure  12.  A schematic of the interdigital H-mode DTL[31]

    图  13  三种不同耦合方式的驻波耦合腔结构剖视图

    Figure  13.  Standing wave coupled cavity structures

    图  14  四翼型RFQ加速腔结构

    Figure  14.  A schematic of a four-vane RFQ structure

    图  15  行波直线共振结构直观模型

    Figure  15.  Intuitive model of traveling wave acceleration

    图  16  盘荷波导结构示意图

    Figure  16.  Disk-loaded waveguide structures

    图  17  激光尾场加速示意图[40]及美国激光加速器BELLA的蓝宝石毛细管放电波导[44]

    Figure  17.  Principle of laser wake field acceleration (LWFA) and the capillary discharge waveguide of Berleeley Lab Laser Accelerator (BELLA)[44]

    图  18  经典回旋加速器示意图

    Figure  18.  Schematic drawing of a classical cyclotron

    图  19  等时性回旋加速器磁极结构示意图

    Figure  19.  Pole faces of the isochronous cyclotrons

    图  20  螺旋扇和径向扇FFAG加速器示意图[54]

    Figure  20.  A spiral and a radial fixed-field alternating-gradient (FFAG) accelerator[54]

    图  21  电子回旋加速器示意图

    Figure  21.  Sketch of a microtron

    图  22  同步加速器示意图

    Figure  22.  Sketch of the synchrotrons

    图  23  光学组合透镜系统

    Figure  23.  Sketch of a combinative optical system

    图  24  花瓣形加速器加速结构示意图[58]

    Figure  24.  Rhodotron acceleration scheme

    图  25  各类典型加速器的相互联系示意图

    Figure  25.  Evolution of acceleration mechanism(modified from Ref.[3])

  • [1] 方守贤, 梁岫如. 神通广大的射线装置: 带电粒子加速器[M]. 北京: 清华大学出版社, 2001.

    Fang Shouxian, Liang Xiuru. Infinitely resourceful ray facilities: charged particle accelerators[M]. Beijing: Tsinghua University Press, 2001
    [2] 陈佳洱. 加速器物理基础[M]. 北京: 北京大学出版社, 2012.

    Chen Jiaer. An introduction to the physics of particle accelerators[M]. Beijing: Beijing University Press, 2012
    [3] 桂伟燮. 荷电粒子加速器原理[M]. 北京: 清华大学出版社, 1994.

    Gui Weixie. Principles of charged particle accelerator[M]. Beijing: Tsinghua University Press, 1994
    [4] 谢家麟. 加速器与科技创新[M]. 北京: 清华大学出版社, 2000.

    Xie Jialin. Accelerators and technological innovations[M]. Beijing: Tsinghua University Press, 2000
    [5] Wiedemann H. Particle accelerator physics[M]. New York: Springer International Publishing, 2015.
    [6] Teng L C. Conceptual and technological evolutions of particle accelerators[J]. High Energy Physics and Nuclear Physics, 2009, 33(s2): 112-114.
    [7] Sessle A, Wilson E. Engines of discovery, a century of particle accelerators[M]. Singapore : World Scientific Publishing Co Pte Ltd, 2014.
    [8] Chao A W, Tigner M. Handbook of accelerator physics and engineering[M]. Singapore : World Scientific Publishing Co Pte Ltd, 2006.
    [9] Humphries S. Principles of charged particle acceleration[M]. New York: Wiley, 1999.
    [10] Takayama K, Briggs R J. Induction accelerators[M]. New York: Springer International Publishing, 2011.
    [11] Edwards D A, Syphers M J. An introduction to the physics of high energy accelerators[M]. Weinheim: Wiley-VCH Verlag GmbH&Co KGaA, 2004.
    [12] Chakhlov S V, Kasyanov S V, Kasyanov V A, et al. Betatron application in mobile and relocatable inspection systems for freight transport control[J]. Journal of Physics: Conference Series, 2016, 671: 012024. doi: 10.1088/1742-6596/671/1/012024
    [13] 刘锡三. 强流粒子束及其应用[M]. 北京: 国防工业出版社, 2007.

    Liu Xisan. Intense particle beams and its applications[M]. Beijing: National Defense Industry Press, 2007
    [14] Boucher S, Agustsson R, Frigola P, et al. High average current betatrons for industrial and security applications[C]//Proceedings of PAC. 2007.
    [15] Wilson P B. Electron linacs for high energy physics[J]. Reviews of Accelerator Science and Technology, 2008, 1: 7-41. doi: 10.1142/S1793626808000034
    [16] 邓建军. 直线感应电子加速器[M]. 北京: 国防工业出版社, 2006.

    Deng Jianjun. Linear induction accelerator for electrons[M]. Beijing: National Defense Industry Press, 2006
    [17] Vintizenko I. Linear induction accelerators for high-power microwave devices[M]. Boca Raton: CRC Press, 2018.
    [18] Zhang C, Fang S X. Particle accelerators in China[J]. Reviews of Accelerator Science and Technology, 2017, 9: 265-312.
    [19] Crawford M, Barraza J. Scorpius: The development of a new multi-pulse radiographic system[C]//IEEE 21st International Conference on Pulsed Power. 2017.
    [20] Akimov A, Akhmetov A, Bak P, et al. Single-triple pulse power supply for 2 kA, 20 MeV linear induction accelerator[C]//IEEE 21st International Conference on Pulsed Power. 2017.
    [21] Vermare C. Investigations on dual-pulse technologies for future upgrade of CEA flash X-rays LIA[C]//IEEE 21st International Conference on Pulsed Power. 2017.
    [22] 黄子平, 吕璐, 陈思富, 等. 脉冲感应加速在环形加速器中的应用[J]. 强激光与粒子束, 2017, 29:020201. (Huang Ziping, Lü Lu, Chen Sifu, et al. Application of pulse induction module in circular accelerators[J]. High Power Laser and Particle Beams, 2017, 29: 020201 doi: 10.11884/HPLPB201729.160460
    [23] 徐玉存. MOSFET调制器关键技术及氦离子FFAG感应加速腔模拟研究[D]. 合肥: 中国科学技术大学, 2011.

    Xu Yucun. Study of the MOSFET modulator and conceptual design of an induction cavity for the He2+ FFAG accelerator[D]. Hefei: University of Science and Technology of China, 2011
    [24] Smith I D. Induction voltage adders and the induction accelerator family[J]. Phys Rev ST Accel Beams, 2004, 7: 064801. doi: 10.1103/PhysRevSTAB.7.064801
    [25] Melissinos A C. Nicholas C Christofilos: His contributions to physics[C]//CERN Accelerator School Fifth Advanced Accelerator Physics Course. 1995, 2: 1067-1081.
    [26] 周良骥. 快脉冲直线变压器驱动源(LTD)技术初步研究[D]. 绵阳: 中国工程物理研究院, 2006.

    Zhou Liangji. Research of linear transformer driver (LTD)[D]. Mianyang: China Academy of Engineering Physics, 2006
    [27] 盛政明, 张杰. 由激光在等离子体中激发的尾波场产生的超强太赫兹电磁辐射[J]. 激光与光电子学进展, 2005, 42(12):35-36. (Sheng Zhengming, Zhang Jie. Super electromagnetic radiation produced by a laser-plasma wakefield[J]. Laser & Optoelectronics Progress, 2005, 42(12): 35-36
    [28] Amaldi U. Particle accelerators: from big bang physics to hadron therapy[M]. New York:Springer International Publishing, 2015.
    [29] Tang Chuanxiang. Low energy accelerators for cargo inspection[J]. Reviews of Accelerator Science and Technology, 2015, 8: 143-163. doi: 10.1142/S179362681530008X
    [30] 刘渭滨. 高能(射频)直线加速器物理[R]. 北京: 中国科学院高能物理研究所加速器中心, 2011.

    Liu Weibin. Radio frequency linear accelerator physics[R]. Beijing: Institute of High Energy Physics Accelerator Center, 2011
    [31] Wangler T P. RF linear accelerator[M]. Weinheim: Wiley-VCH Verlag GmbH&Co KGaA, 2008.
    [32] 杜衡. IH-DTL直线加速器的设计及实验研究[D]. 兰州: 中国科学院近代物理研究所, 2017.

    Du Heng. Design and experiment study of IH-DTL linac[D]. Lanzhou: Institute of Modern Physics, Chinese Academy of Sciences, 2017
    [33] 刘乃泉. 加速器理论[M]. 北京: 清华大学出版社, 2004.

    Liu Naiquan. Theory of particle accelerator[M]. Beijing: Tsinghua University Press, 2004
    [34] 王国林. 基于高梯度加速结构高功率测试平台控制和测量的研究[D]. 上海: 中国科学院上海应用物理研究所, 2015.

    Wang Guolin. The research of control and measurement of the high power testing platform based on high-gradient accelerating structures[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2015
    [35] 黄晓霞. X 波段高梯度加速结构及尾场效应研究[D]. 上海: 中国科学院上海应用物理研究所, 2017.

    Huang Xiaoxia. Study of the X-band high gradient accelerating structure and wakefield effects[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2017
    [36] 邵佳航. 高梯度加速结构中射频击穿现象的研究[D]. 北京: 清华大学, 2016.

    Shao Jiahang. Investigations on rf breakdown phenomenon in high gradient accelerating structures[D]. Beijing: Tsinghua University, 2016
    [37] Ioshi C. The development of laser- and beam-driven plasma accelerators as an experimental field[J]. Phys Plasmas, 2007, 14: 055501. doi: 10.1063/1.2721965
    [38] Hogan M J. Electron and positron beam-driven plasma acceleration[J]. Reviews of Accelerator Science and Technology, 2016, 9: 63-83. doi: 10.1142/S1793626816300036
    [39] Adli E, Muggli P. Proton-beam-driven plasma acceleration[J]. Reviews of Accelerator Science and Technology, 2016, 9: 85-104. doi: 10.1142/S1793626816300048
    [40] 盛政明, 陈民, 翁苏明, 等. 超短超强激光驱动新型粒子加速器: 机遇和挑战[J]. 物理, 2018, 47(12):753-762. (Sheng Zhenming, Chen Min, Weng Suming, et al. Novel particle accelerators driven by ultrashort and ultraintense lasers: opportunities and challenges[J]. Phyisics, 2018, 47(12): 753-762 doi: 10.7693/wl20181201
    [41] 胡荣豪, 颜学庆. 激光等离子体加速器: 原理、现状以及展望[J]. 现代物理知识, 2017(5):35-39. (Hu Ronghao, Yan Xueqing. Laser-driven plasma accelerators: principles, status and expectations[J]. Modern Physics, 2017(5): 35-39
    [42] Bolton P R, Parodi K, Schreiber J. Applications of laser-driven particle acceleration[M]. Boca Raton: CRC Press, 2018.
    [43] 高著秀, 黄建国, 韩建伟, 等. 等离子体加速器动力学理论探索[J]. 航天器环境工程, 2010, 27(3):285-289. (Gao Zhuxiu, Huang Jianguo, Han Jianwei, et al. Dynamics of plasma driven micro-particle accelerator[J]. Spacecraft Environment Engineering, 2010, 27(3): 285-289 doi: 10.3969/j.issn.1673-1379.2010.03.003
    [44] Pepitone K, Doebert S, Apsimon R. The electron accelerators for the AWAKE experiment at CERN—baseline and future developments[J]. Nuclear Inst and Methods in Physics Research A, 2018, 909: 102-106. doi: 10.1016/j.nima.2018.02.044
    [45] Greene K.. World record for compact particle accelerator[R]. Lawrence Berkeley National Laboratory, 2014.
    [46] Gonsalves A J, Nakamura K, Daniels J, et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide[J]. Phys Rev Lett, 2019, 122: 084801. doi: 10.1103/PhysRevLett.122.084801
    [47] Zhu Jungao, Zhu Kun, Tao Li, et al. Distribution uniformity of laser-accelerated proton beams[J]. Chinese Physics C, 2017, 41: 097001. doi: 10.1088/1674-1137/41/9/097001
    [48] Wenz J, Dopp A, Khrennikov K, et al. Dual-energy electron beams from a compact laser-driven acceleration[J]. Nature Photonics, 2019, 13: 263-269. doi: 10.1038/s41566-019-0356-z
    [49] Smirnov V, Vorozhtsov S. Modern compact accelerators of cyclotron type for medical applications[J]. Physics of Particles and Nuclei, 2016, 47(5): 863-883. doi: 10.1134/S1063779616050051
    [50] Pearson E, Kleeven W, Nuttens V, et al. Development of cyclotrons for proton and particle therapy[M]//Particle Radiotherapy: Emerging Technology for Treatment of Cancer. New Delhi: Springer India Ltd, 2016:21-36.
    [51] 唐靖宇, 魏宝文. 回旋加速器理论设计[M]. 合肥: 中国科技大学出版社, 2008.

    Tang Jinyu, Wei Baowen. Theory and design of cyclotrons[M]. Hefei: Press of University of Science and Technology of China, 2008
    [52] 张天爵, 吕银龙, 王川, 等. 中国原子能科学研究院回旋加速器创新与发展60年[J]. 原子能科学技术, 2019, 53(10):2023-2030. (Zhang Tianjue, Lü Yinlong, Wang Chuan, et al. 60 years of innovation and development for cyclotron at CIAE[J]. Atomic Energy Science and Technology, 2019, 53(10): 2023-2030
    [53] Craddock M K, Symon K R. Cyclotrons and fixed-field alternating-gradient accelerators[J]. Reviews of Accelerator Science and Technology, 2008, 1(1): 65-97. doi: 10.1142/S1793626808000058
    [54] Ruggiero A G. Brief history of the FFAG accelerator[R]. BNL-75635-2006-CP, 2006.
    [55] 罗焕丽. 驱动离子束FFAG加速器与C-ADS输运中若干物理问题的探索研究[D]. 合肥: 中国科学技术大学, 2013.

    Luo Huanli. Research on several problems in heavy ion FFAG accelerator and C-ADS particle transporting[D]. Hefei: University of Science and Technology of China, 2013
    [56] Sheehy S L. Fixed-field alternating-gradient accelerators[R]. CERN Yellow Reports, 2017.
    [57] Dubinov A E, Ochkina E I. Recirculating electron accelerators with noncircular electron orbits as radiation sources for applications[J]. Physics of Particles and Nuclei, 2018, 49(3): 431-456. doi: 10.1134/S1063779618030048
    [58] 陈勇, 黄文会, 唐传祥. Rhodotron型加速器粒子动力学研究[J]. 高能物理与核物理, 2005, 29(2):180-185. (Chen Yong, Huang Wenhui, Tang Chuanxiang. Dynamics study of the Rhodotron accelerator[J]. High Energy Physics and Nuclear Physics, 2005, 29(2): 180-185 doi: 10.3321/j.issn:0254-3052.2005.02.014
    [59] 陈勇. Rhodotron型加速器的动力学研究[D]. 北京: 清华大学, 2005.

    Chen Yong. Dynamics study of the Rhodotron accelerator[D]. Beijing: Tsinghua University, 2005
    [60] 赵籍九, 尹兆升. 粒子加速器技术[M]. 北京: 高等教育出版社, 2006.

    Zhao Jijiu, Yin Zhaosheng. Particle accelerator technology[M]. Beijing: Higher Education Press, 2006
  • 加载中
图(25)
计量
  • 文章访问数:  3350
  • HTML全文浏览量:  889
  • PDF下载量:  444
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-11
  • 修回日期:  2020-02-09
  • 刊出日期:  2020-03-06

目录

    /

    返回文章
    返回