留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分布式负载垂直极化有界波电磁脉冲模拟器外泄场的规律分析

谢霖燊 吴伟 朱湘琴

谢霖燊, 吴伟, 朱湘琴. 分布式负载垂直极化有界波电磁脉冲模拟器外泄场的规律分析[J]. 强激光与粒子束, 2020, 32: 055002. doi: 10.11884/HPLPB202032.190434
引用本文: 谢霖燊, 吴伟, 朱湘琴. 分布式负载垂直极化有界波电磁脉冲模拟器外泄场的规律分析[J]. 强激光与粒子束, 2020, 32: 055002. doi: 10.11884/HPLPB202032.190434
Xie Linshen, Wu Wei, Zhu Xiangqin. Regularity analysis of leakage-field from vertically polarized bounded wave electromagnetic pulse simulator with distributed load[J]. High Power Laser and Particle Beams, 2020, 32: 055002. doi: 10.11884/HPLPB202032.190434
Citation: Xie Linshen, Wu Wei, Zhu Xiangqin. Regularity analysis of leakage-field from vertically polarized bounded wave electromagnetic pulse simulator with distributed load[J]. High Power Laser and Particle Beams, 2020, 32: 055002. doi: 10.11884/HPLPB202032.190434

分布式负载垂直极化有界波电磁脉冲模拟器外泄场的规律分析

doi: 10.11884/HPLPB202032.190434
基金项目: 强脉冲辐射环境模拟与效应国家重点实验室专项经费资助项目(SKLIPR1601Z)
详细信息
    作者简介:

    谢霖燊(1982—),男,硕士,助理研究员,主要从事脉冲功率技术和电磁脉冲模拟产生技术等;xielinshen@nint.ac.cn

  • 中图分类号: TN011; O441.3

Regularity analysis of leakage-field from vertically polarized bounded wave electromagnetic pulse simulator with distributed load

  • 摘要:

    将基于MPI平台的并行时域有限差分(FDTD)方法与基于完全磁导体(PMC)镜像法相结合,并结合CST模拟软件,模拟给出分布式负载垂直极化有界波电磁脉冲(EMP)的外泄场(包括侧泄场和后泄场)的分布规律。模拟结果与实验结果符合得很好。研究表明:在高度方向上,地面附近的外泄场峰值最大,但远离模拟器时,在1.5 m高的高度范围内,外泄场的峰值差别不大;不管采用何种双指数脉冲源,距离模拟器边缘位置比较近的测点在传输线段的侧泄场的幅值大于分布式负载段侧泄场的幅值,且两者都大于分布式负载末端的后泄场幅值,但随着测点与模拟器边缘的垂直距离的增加,分布式负载段的后泄场可能会比侧泄场大;对于电压峰值相同的双指数激励源而言,所含的高频分量越多,在一定范围内,从其分布式负载末端外泄的后泄场更大;模拟器下方大地的电导率增加,模拟器的外泄场增加。

  • 图  1  常规分布式负载有界波电磁脉冲模拟器的示意图

    Figure  1.  Configuration of bounded-wave EMP simulator with distributed load

    图  2  测点P时域波形理论模拟和实验结果的对比

    Figure  2.  Comparison of results got from simulation and experiment

    图  3  若干测点外泄场理论模拟和实验结果的对比

    Figure  3.  Comparison of relative peak-values of leakage electric fields got from simulation and experiment

    图  4  距离水泥地面高度hd不同的侧泄场及后泄场z分量的归一化峰值的比较

    Figure  4.  Comparison of relative peak-values of leakage field(Ez) at different horizontal plane with various hd

    图  5  距离水泥地面高度不同的侧泄场及后泄场的归一化幅值的比较

    Figure  5.  Comparison of relative peak-values of leakage field at different horizontal plane with various hd

    图  6  不同位置的外泄场测点电场归一化幅值的比较

    Figure  6.  Comparison of relative peak-values of leakage field at different location

    图  7  激励源不同的各外泄场测点归一化场幅值的比较

    Figure  7.  Comparison of relative peak-values of leakage field as exciting source changes

    图  8  大地相对介电常数分别为10及3时外泄场的比较

    Figure  8.  Comparison of leakage field from simulator as εr of ground changes

    图  9  大地电导率σ不同时外泄场归一化幅值的比较

    Figure  9.  Comparison of relative peak-values of leakage field as electronic conductivity of ground changes

    表  1  激励源不同时若干外泄场测点电场归一化幅值的比较

    Table  1.   Comparison of relative peak-values of leakage field at different testing points as source changes

    ABCDE
    tr=1 ns,FWHM=20 ns0.4150.4240.3610.2440.310
    tr=2.5 ns,FWHM=23 ns0.4390.4450.3760.2590.309
    tr=5 ns,FWHM=80 ns0.4590.4580.4090.2450.301
    下载: 导出CSV
  • [1] Baum C E. EMP simulators for various types of nuclear EMP environments: an interim categorization[J]. IEEE Trans Electromagnetic Compatibility, 1978, 20(1): 35-53.
    [2] 潘晓东, 魏光辉, 任新智. 有界波模拟器内部电场分布仿真研究[J]. 测试技术学报, 2007, 21(5):410-413. (Pan Xiaodong, Wei Guanghui, Ren Xinzhi. Simulation research on electric field distribution in bounded-wave simulator[J]. Journal of Test and Measurement Technology, 2007, 21(5): 410-413 doi: 10.3969/j.issn.1671-7449.2007.05.008
    [3] 李云伟, 王泽忠, 刘峰. 有界波电磁脉冲模拟器参数对传播模式的影响[J]. 高电压技术, 2007, 33(5):54-57. (Li Yunwei, Wang Zezhong, Liu Feng. Influence of parameters of boundary electromagnetic pulse simulator on transmitting mode[J]. High Voltage Engineering, 2007, 33(5): 54-57 doi: 10.3969/j.issn.1003-6520.2007.05.014
    [4] 朱湘琴, 王建国, 陈维青, 等. 集总负载平行板有界波电磁脉冲模拟器的并行时域有限差分模拟[J]. 强激光与粒子束, 2013, 25(9):2334-2340. (Zhu Xiangqin, Wang Jianguo, Chen Weiqing, et al. Parallelized FDTD simulation for flat-plate bounded wave EMP simulator with lumped terminator[J]. High Power Laser and Particle Beams, 2013, 25(9): 2334-2340 doi: 10.3788/HPLPB20132509.2334
    [5] 孙凤杰, 罗学金, 李小伟, 等. 亚纳秒前沿有界波模拟器传输线设计的理论分析与实验[J]. 强激光与粒子束, 2008, 20(5):811-814. (Sun Fengjie, Luo Xuejin, Li Xiaowei, et al. Theoretical analysis and experimental varification on design of transmission line for subnanosecond risetime EMP simulator[J]. High Power Laser and Particle Beams, 2008, 20(5): 811-814
    [6] 朱湘琴, 王建国, 陈维青, 等. 分布式负载平行板有界波EMP模拟器的并行FDTD分析[J]. 强激光与粒子束, 2014, 26:035001. (Zhu Xiangqin, Wang Jianguo, Chen Weiqing, et al. Simulation for flat-plate bounded wave electromagnetic pulse simulator with distributed terminator[J]. High Power Laser and Particle Beams, 2014, 26: 035001 doi: 10.3788/HPLPB20142603.35001
    [7] Giri D V, Baum C E. Design guidelines for flat-plate conical guided-wave EMP simulators with distributed terminators[R]. Sensor and Simulation Note 402, 1996.
    [8] 国海广, 魏光辉, 范丽思, 等. 快沿电磁脉冲模拟器内部垂直极化场分布仿真研[J]. 强激光与粒子束, 2009, 21(3):403-406. (Guo Haiguang, Wei Guanghui, Fan Lisi, et al. Simulation study on vertical field distribution of EMP simulator with fast risetime[J]. High Power Laser and Particle Beams, 2009, 21(3): 403-406
    [9] 段泽民, 郝凤柱, 张松, 等. 有界波模拟器波形仿真与实验研究[J]. 传感器与微系统, 2018, 37(2):76-79, 85. (Duan Zemin, Hao Fengzhu, Zhang Song, et al. Waveform simulation and experimental study of bounded-wave simulator[J]. Transducer and Microsystem Technologies, 2018, 37(2): 76-79, 85
    [10] Yao Lijun, Shen Tao, Kang Ning, et al. Time-domain simulation and measurement of a guided-wave EMP simulator's field uniformity[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(6): 1187-1194. doi: 10.1109/TEMC.2013.2257795
    [11] 谢彦召, 相辉, 聂鑫, 等. 不对称结构的分布式负载有界波电磁脉冲模拟器[J]. 强激光与粒子束, 2006, 18(10):1669-1672. (Xie Yanzhao, Xiang Hui, Nie Xin, et al. Design and construction of an asymmetrical bounded wave EMP simulator with distributed terminators[J]. High Power Laser and Particle Beams, 2006, 18(10): 1669-1672
    [12] 朱湘琴, 王建国, 陈维青, 等. 垂直极化平行板有界波EMP模拟器辐射近场的快速估算方法[J]. 强激光与粒子束, 2014, 26:115005. (Zhu Xiangqin, Wang Jianguo, Chen Weiqing, et al. Method of fast estimating radiation near-field of flat-plate bounded wave electromagnetic pulse simulator with vertical polarization[J]. High Power Laser and Particle Beams, 2014, 26: 115005 doi: 10.3788/HPLPB20142611.115005
    [13] 傅海军, 张维刚, 岳思橙, 等. 系统级电磁脉冲模拟试验技术[J]. 现代防御技术, 2018, 46(3):127-132. (Fu Haijun, Zhang Weigang, Yue Sicheng. Electromagnetic pulse simulating test methods on system level[J]. Modern Defence Technology, 2018, 46(3): 127-132
    [14] 谢彦召, 孙蓓云, 聂鑫, 等. 有界波电磁脉冲模拟器下短线缆效应的理论和实验研究[J]. 强激光与粒子束, 2005, 17(11):1717-1720. (Xie Yanzhao, Sun Beiyun, Nie Xin, et al. Response of a short single-wire line illuminated by an EMP simulator[J]. High Power Laser and Particle Beams, 2005, 17(11): 1717-1720
    [15] 翟爱斌, 谢彦召, 韩军, 等. 两种高空核爆电磁脉冲下电话机的效应异同性及概率分布[J]. 强激光与粒子束, 2009, 21(10):1529-1533. (Zhai Aibin, Xie Yanzhao, Han Jun, et al. Effect of high altitude nuclear electromagnetic pulse upon phone call[J]. High Power Laser and Particle Beams, 2009, 21(10): 1529-1533
    [16] 刘洋, 程立, 汪家春, 等. 核电磁脉冲模拟器的电场特性及, 等离子体阵列的防护性能[J]. 国防科技大学学报, 2018, 40(4):41-46. (Liu Yang, Cheng Li, Wang Jiachun, et al. Electric field characteristics of nuclear electromagnetic pulse simulator and protection performance of plasma array[J]. Journal of National University of Defense Technology, 2018, 40(4): 41-46 doi: 10.11887/j.cn.201804007
    [17] 杜立航, 高成, 陈海林, 等. 金属挡板对平行线栅有界波模拟器的影响仿真研究[J]. 强激光与粒子束, 2018, 30:073204. (Du Lihang, Gao Cheng, Chen Hailin, et al. Simulation study on influence of metal plate on parallel wire-grid bounded-wave simulator[J]. High Power Laser and Particle Beams, 2018, 30: 073204
    [18] Du Lihang, Gao Cheng, Zhang Qi. Numerical analysis on electromagnetic radiation environment of the bounded-wave simulator with a metal plate[J]. Journal of Electromagnetic Waves and Applications, 2017, 31(11/12): 1083-1092.
    [19] Tresche F M, Mo C, Shoup R W. Determination of the electromagnetic fields radiated from the ARES EMP simulator[J]. IEEE Transactions on Electromagnetic Compatibility, 1994, 36(4): 331-341. doi: 10.1109/15.328863
    [20] Kichouliya R, Satav S M, Thomas M J. Leakage electric field analysis of a guided wave NEMP simulator[C]//International Symposium on Electromagnetic Compatibility. 2016: 1-6.
    [21] Du Lihang, Gao Cheng, Zhang Qi, et al. Simulation and evaluation of leakage electric field of bounded-wave simulator[J]. Journal of Electromagnetic Waves and Applications, 2019, 33(8): 959-971. doi: 10.1080/09205071.2019.1577184
    [22] Ahmed S, Raju D, Chaturvedi S, et al. Modal analysis for a bounded-wave EMP simulator-part II: Radiation leakage and mode suppression[J]. IEEE Transactions on Electromagnetic Compatibility, 2005, 47(1): 183-191. doi: 10.1109/TEMC.2004.842101
    [23] Zhu Xiangqin, Wu Wei, Zhang Guowei, et al. Analysis of leakage field from bounded wave electromagnetic pulse simulator[C]//IEEE 2nd International Conference on Electronic Information and Communication Technology. 2019: 1-3.
    [24] 卢万铮. 天线原理与技术[M]. 西安: 西安电子科技大学出版社, 2004.

    Lu Wanzheng. Antenna theory and technology. Xi’an: Xidian University Press, 2004
    [25] 葛德彪, 魏兵. 电磁波理论[M]. 北京: 科学出版社, 2011.

    Ge Debiao, Wei Bing. Electromagnetic wave theory. Beijing: Science Press, 2011
    [26] 谢霖燊, 石跃武, 张国伟, 等. “春雷”号模拟装置新传输线的传输特性[J]. 现代应用物理, 2016, 7:040501. (Xie Linshen, Shi Yuewu, Zhang Guowei, et al. Study of the new transmission line used in “Spring-Thunder” bounded-wave EMP simulator[J]. Modern Applied Physics, 2016, 7: 040501
    [27] 杜雷鸣, 谢彦召, 王绍飞. 平行板传输线特性阻抗仿真计算及解析修正[J]. 强激光与粒子束, 2015, 27:083201. (Du Leiming, Xie Yanzhao, Wang Shaofei. Simulation computation and analytic modification of characteristic impedance of parallel-plate transmission line[J]. High Power Laser and Particle Beams, 2015, 27: 083201
    [28] Gedney S D. An anisotropic PML absorbing media for FDTD simulation of fields in lossy dispersive media[J]. Electromagnetics, 1996, 16(4): 339-415.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1440
  • HTML全文浏览量:  397
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-21
  • 修回日期:  2019-12-25
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回