留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子能量分析器测量特性的仿真研究

翟红雨 程健 陈银华 陆伟

翟红雨, 程健, 陈银华, 等. 离子能量分析器测量特性的仿真研究[J]. 强激光与粒子束, 2020, 32: 084002. doi: 10.11884/HPLPB202032.190459
引用本文: 翟红雨, 程健, 陈银华, 等. 离子能量分析器测量特性的仿真研究[J]. 强激光与粒子束, 2020, 32: 084002. doi: 10.11884/HPLPB202032.190459
Zhai Hongyu, Cheng Jian, Chen Yinhua, et al. Simulation study on measurement characteristics of ion energy analyzer[J]. High Power Laser and Particle Beams, 2020, 32: 084002. doi: 10.11884/HPLPB202032.190459
Citation: Zhai Hongyu, Cheng Jian, Chen Yinhua, et al. Simulation study on measurement characteristics of ion energy analyzer[J]. High Power Laser and Particle Beams, 2020, 32: 084002. doi: 10.11884/HPLPB202032.190459

离子能量分析器测量特性的仿真研究

doi: 10.11884/HPLPB202032.190459
基金项目: 国家自然科学基金项目(11575182)
详细信息
    作者简介:

    翟红雨(1996—),男,硕士研究生,从事嵌入式测量系统的理论与仿真分析;hyzhai@mail.ustc.edu.cn

    通讯作者:

    程 健(1964—),男,副教授,主要从事等离子体测量设备系统的研制与应用;chengj@ustc.edu.cn

  • 中图分类号: O53

Simulation study on measurement characteristics of ion energy analyzer

  • 摘要: 针对空间等离子体及其模拟环境、空间原子氧及其模拟环境对离子能谱测量的需要,利用仿真软件COMSOL,对离子能量分析器的低能离子测量特性进行了仿真研究。介绍了离子能量分析器的工作原理,对离子能谱测量过程进行了公式推导。通过对三种待选仪器设计方案进行离子透过率仿真分析,确定了一种较优的仪器设计方案。多种离子温度下的误差分析结果也表明,该设计方案能够较为准确地测量离子能量分布。分析了电场畸变、等离子鞘层、栅网对齐方式和离子温度对测量结果的影响,根据仿真结果对一些仿真实验现象做出了合理的解释。
  • 图  1  离子能量分析器典型结构

    Figure  1.  Typical structure of ion energy analyzer (IEA)

    图  2  理想情况下离子能量分析器测量曲线

    Figure  2.  Ideal IEA measurement curve

    图  3  模型简化过程

    Figure  3.  Model simplification processes

    图  4  三种设计方案的离子透过率曲线

    Figure  4.  Ion transmission curve of three schemes

    图  5  方案A和方案B的离子透过率曲线

    Figure  5.  Ion transmission curve for scheme A and scheme B

    图  6  离子能量分析器内部电场图

    Figure  6.  Internal electric field of IEA

    图  7  不同入射能量下的离子运动轨迹

    Figure  7.  Ion trajectories at different initial energies

    图  8  栅网对齐的两种情况

    Figure  8.  Two cases of grid alignment

    图  9  两种对齐方式下的离子透过率曲线

    Figure  9.  Ion transmission curve in two alignments

    图  10  不同仪器电位下的离子透过率曲线

    Figure  10.  Ion transmission curve at different instrument potentials

    图  11  不同仪器电位下的I-V曲线

    Figure  11.  I-V curve at different instrument potentials

    图  12  不同温度下的I-V曲线和离子能量分布

    Figure  12.  I-V curve and ion energy distribution at different temperatures

    表  1  不同温度下离子速度拟合结果

    Table  1.   Ion velocity fitting results at different temperatures

    temperature/Kaverage velocity/(m·s−1relative error/%${\varepsilon _{\rm{RMSE}}}$/eV
    5007593−0.090.05
    100076260.340.11
    150076570.750.07
    200078112.770.73
    下载: 导出CSV
  • [1] Bourdeau R E, Whipple E C Jr, Donley J L, et al. Experimental evidence for the presence of helium ions based on Explorer VIII satellite data[J]. Journal of Geophysical Research, 1962, 67(2): 467-475. doi: 10.1029/JZ067i002p00467
    [2] Sarkar S, Gwal A K, Parrot M. Ionospheric variations observed by the DEMETER satellite in the mid-latitude region during strong earthquakes[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69(13): 1524-40. doi: 10.1016/j.jastp.2007.06.006
    [3] 陳信良. 中華衛星一號電離層電漿電動效應儀 (IPEI) 資料之頻譜分析[D]. 台灣: 國立中央大學, 2009: 4-7.

    Chen Hsinliang. Spectrum analysis of the data of China Satellite No. 1 Ionospheric Plasma and Electrodynamics Instrument (IPEI)[D]. Taiwan: National Central University, 2009: 4-7
    [4] Sgrigna V, Buzzi A, Conti L, et al. The ESPERIA satellite project for detecting seismo-associated effects in the topside ionosphere: First instrumental tests in space[J]. Earth Planets Space, 2008, 60(5): 463-475. doi: 10.1186/BF03352813
    [5] Satir M, Sik F, Turkoz E, et al. Design of the retarding potential analyzer to be used with BURFIT-80 ion thruster and validation using PIC-DSMC code[C]/7th International Conference on Recent Advances in Space Technologies. 2015.
    [6] Goldan P D, Yadlowsky E J, Whipple E C. Errors in ion and electron-temperature measurements due to grid plane potential nonuniformities in retarding potential analyzers[J]. Journal of Geophysical Research, 1973, 78(16): 2907-2916. doi: 10.1029/JA078i016p02907
    [7] Troy B E, Maier E J. Effect of grid transparency and finite collector size on determining ion temperature and density by retarding potential analyzer[J]. Journal of Geophysical Research−Space Physics, 1975, 80(16): 2236-2240. doi: 10.1029/JA080i016p02236
    [8] Knudsen W C. Finite grid radius and thickness effects on retarding potential analyzer measured suprathermal electron-density and temperature[J]. Journal of Geophysical Research−Space Physics, 1992, 97(A9): 13767-13775. doi: 10.1029/92JA00642
    [9] Chao C K, Su S Y. Charged particle motion inside the retarding potential analyzer[J]. Physics of Plasmas, 2000, 7(1): 101-107. doi: 10.1063/1.873817
    [10] Chao C K, Su S Y, Yeh H C. Grid effects on the derived ion temperature and ram velocity from the simulated results of the retarding potential analyzer data[J]. Advances in Space Research, 2003, 32(11): 2361-2366. doi: 10.1016/S0273-1177(03)90566-7
    [11] Klenzing J H, Earle G D, Heelis R A, et al. A statistical analysis of systematic errors in temperature and ram velocity estimates from satellite-borne retarding potential analyzers[J]. Physics of Plasmas, 2009, 16: 052901. doi: 10.1063/1.3125311
    [12] 冯宇波, 王世金, 孔令高. 电离层星载阻滞势分析器的误差仿真分析[J]. 地球物理学报, 2010, 53(11):2535-2543. (FengYubo, Wang Shijin, Kong Linggao. Simulation analysis of errors from ionosphere satellite-borne retarding potential analyzer[J]. Chinese Journal of Geophysics−Chinese Edition, 2010, 53(11): 2535-2543
    [13] Fisher L E, Lynch K A, Fernandes P A, et al. Including sheath effects in the interpretation of planar retarding potential analyzer’s low-energy ion data[J]. Review of Scientific Instruments, 2016, 87: 043504. doi: 10.1063/1.4944416
    [14] Pfaff F, Borovsky E, Young T. Measurements of thermal ion drift velocity and temperature using planar sensors[J]. Geophysical Monograph, 1998, 102: 61-71.
    [15] COMSOL Inc. Particle tracing module updates[EB/OL]. https://www.comsol.com/release/5.3/particle-tracing-module.
    [16] Bilitza D, Altadill D, Reinisch B, et al. The international reference ionosphere: model update 2016[C]//EGU General Assembly Conference Abstracts. 2016: 18.
    [17] The Community Coordinated Modeling Center. International Reference Ionosphere−IRI (2016) with IGRF-13 coefficients [EB/OL]. https://ccmc.gsfc.nasa.gov/modelweb/models/iri2016_vitmo.php.
    [18] Marrese C M, Majumdar N, Haas J, et al. Development of a single-orifice retarding potential analyzer for Hall thruster plume characterization[C]//25th International Electric Propulsion Conference. 1997: 397-404.
    [19] Zheng Xiangzhi, Zhang Aibing, Guan Yibing, et al. Research on retarding potential analyzer aboard China seismo-electromagnetic satellite[J]. Acta PhysicaSinica, 2017, 66: 079401.
    [20] 熊年禄, 唐存琛, 李行健. 电离层物理概论[M]. 武汉: 武汉大学出版社, 1999: 53-55.

    Xiong Nianlu, Tang Chunshen, Li Xingjian. Introduction to ionospheric physics[M]. Wuhan: Wuhan University Press, 1999: 53-55
    [21] Lieberman M A, Lichtenberg A J. Principles of plasma discharges and materials processing[M]. New Jersey: John Wiley & Sons, 2005.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  1112
  • HTML全文浏览量:  338
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-09
  • 修回日期:  2020-06-08
  • 刊出日期:  2020-08-13

目录

    /

    返回文章
    返回