留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于DSRD的高重频固态脉冲源的研制

赖雨辰 谢彦召 王海洋 仇杨鑫 杨洁

赖雨辰, 谢彦召, 王海洋, 等. 基于DSRD的高重频固态脉冲源的研制[J]. 强激光与粒子束, 2020, 32: 105002. doi: 10.11884/HPLPB202032.200102
引用本文: 赖雨辰, 谢彦召, 王海洋, 等. 基于DSRD的高重频固态脉冲源的研制[J]. 强激光与粒子束, 2020, 32: 105002. doi: 10.11884/HPLPB202032.200102
Lai Yuchen, Xie Yanzhao, Wang Haiyang, et al. Development of the high repetitive frequency solid-state pulse generator based on DSRD[J]. High Power Laser and Particle Beams, 2020, 32: 105002. doi: 10.11884/HPLPB202032.200102
Citation: Lai Yuchen, Xie Yanzhao, Wang Haiyang, et al. Development of the high repetitive frequency solid-state pulse generator based on DSRD[J]. High Power Laser and Particle Beams, 2020, 32: 105002. doi: 10.11884/HPLPB202032.200102

基于DSRD的高重频固态脉冲源的研制

doi: 10.11884/HPLPB202032.200102
基金项目: 中国博士后科学基金项目(185581)
详细信息
    作者简介:

    赖雨辰(1996—),女,硕士研究生,主要从事高功率电磁脉冲源技术研究;laiyuchen16@163.com

    通讯作者:

    谢彦召(1973—),男,教授,博导,主要从事高功率电磁环境与电磁脉冲,电磁兼容理论与实验技术等研究;yzxie@mail.xjtu.edu.cn

  • 中图分类号: TN313;TN78

Development of the high repetitive frequency solid-state pulse generator based on DSRD

  • 摘要: 介绍了一种基于新型高功率超高速半导体断路开关——漂移阶跃恢复二极管(DSRD)和可饱和脉冲变压器的高电压高重频超高速全固态脉冲源。设计了脉冲源的电路拓扑结构,理论上分析了脉冲源电路的工作原理,研究获得了可饱和脉冲变压器匝数、磁芯截面积及负载阻抗等参数对脉冲源输出特性的影响的规律。实验结果表明:脉冲源在50 kΩ阻性负载条件下,输出脉冲峰值电压约38.2 kV,脉冲前沿约7.1 ns,脉冲宽度约14.1 ns,输出峰值功率约29.2 kW,可在400 kHz重复频率下稳定工作。
  • 图  1  DSRD基本结构示意图

    Figure  1.  Diagram of DSRD basic structure

    图  2  DSRD典型电压电流波形

    Figure  2.  Typical voltage-time and current-time waveforms of DSRD

    图  3  DSRD脉冲源电路示意图

    Figure  3.  Schematic of DSRD pulse generator circuit

    图  4  基于DSRD的脉冲源

    Figure  4.  Pulse generator based on DSRD

    图  5  线圈缠绕匝数对输出特性的影响

    Figure  5.  Waveforms of output voltage,rise time and FWHM pulse width changing with coil winding turns

    图  6  磁芯截面积对输出特性的影响

    Figure  6.  Waveforms of output voltage,rise time and FWHM pulse width changing with magnetic core layers

    图  7  触发脉冲宽度对输出特性的影响

    Figure  7.  Waveforms of output voltage,rise time and FWHM pulse width changing with the width of trigger pulse

    图  8  负载电阻阻值对输出特性的影响

    Figure  8.  Waveforms of output voltage,rise time and FWHM pulse width changing with load resistance

    图  9  参数优化后脉冲源输出电压及器件泵浦电流波形

    Figure  9.  Waveforms of output voltage and pumped current of the pulse generator after optimization

    图  10  参数优化前后脉冲源输出电压波形

    Figure  10.  Waveforms of output voltage of the pulse generator before and after optimization

    图  11  重频为400 kHz时脉冲源重复工作输出波形

    Figure  11.  Repetitive output waveforms of pulse generator based on driftstep recovery diode (DSRD) (frequency is 400 kHz)

  • [1] Kardo-Sysoev A F, Efanov V M, Chashnikov I G. Fast power switches from picosecond to nanosecond time scale and their application to pulsed power[C]//10th IEEE International Pulsed Power Conference. 1995: 342-347.
    [2] 梁琳, 余岳辉. 半导体脉冲功率开关发展综述[J]. 电力电子技术, 2012, 46(12):42-45. (Liang Lin, Yu Yuehui. Review on development of semiconductor pulsed power switches[J]. Power Electronics, 2012, 46(12): 42-45
    [3] Gao Mingxiang, Xie Yanzhao, Qiu Yangxin, et al. Performance improvement of sub-nanosecond Marx generator based on avalanche transistors by considering the traveling wave process[C]//2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility. 2018: 925-927.
    [4] 陈锦晖, 王磊, 施华, 等. HEPS 在轴注入冲击器系统及快脉冲电源样机研制[J]. 强激光与粒子束, 2019, 31:040017. (Chen Jinhui, Wang Lei, Shi Hua, et al. Application of fast pulsed power supply to high energy photon source[J]. High Power Laser and Particle Beams, 2019, 31: 040017
    [5] Korotkov S V, Aristov Yu V, Zhmodicov A L, et al. A modular drift step-recovery diode generator for nanosecond pulse technologies[J]. Instruments & Experimental Techniques, 2016, 59(3): 356-361.
    [6] Zhang L, Zhou B, Xie Y, et al. Transmitter techniques for ultra-wideband ground penetrating radar based on drift step recovery diodes[J]. High Power Laser and Particle Beams, 2009, 21(12): 1854-1858.
    [7] Prokhorenko V, Ivashchuk V, Korsun S. Drift step recovery devices utilization for electromagnetic pulse radiation[C]//Tenth International Conference on Ground Penetrating Radar. 2005: 195-198.
    [8] Kilpelae A, Vainshtein S, Kostamovaara J T. Generating optical pulses for a fast laser radar[C]//Proc of SPIE. 1997, 3101: 237-247.
    [9] Merensky L M, Kardo-Sysoev A F, Flerov A N, et al. A low-jitter 1.8-kV 100-ps rise-time 50-kHz repetition-rate pulsed-power generator[J]. IEEE Transactions on Plasma Science, 2009, 37(9): 1855-1862. doi: 10.1109/TPS.2009.2025377
    [10] 王亚杰, 何鹏军, 荆晓鹏, 等. 基于漂移阶跃恢复二极管开关的脉冲源仿真计算[J]. 强激光与粒子束, 2018, 30:095005. (Wang Yajie, He Pengjun, Jing Xiaopeng, et al. Simulation and calculation of pulsed power source based on drift step recovery diode switching[J]. High Power Laser and Particle Beams, 2018, 30: 095005
    [11] 张琦, 宋法伦, 金晓, 等. 基于DSRD的纳秒级固态脉冲发生器的研制[J]. 半导体技术, 2019, 44(6):483-487. (Zhang Qi, Song Falun, Jin Xiao, et al. Development of the nanosecond solid-state pulse generator based on DSRD[J]. Semiconductor Technology, 2019, 44(6): 483-487
    [12] 余岳辉, 梁琳. 脉冲功率器件及其应用[M]. 北京: 机械工业出版社, 2010: 212-217.

    Yu Yuehui, Liang Lin. Pulsed power device and its applications[M]. Beijing: China Machine Press, 2010: 212-217
    [13] Wang Haiyang, Lai Yuchen, Xie Yanzhao. A 40 kV, 500 kHz solid-state pulsed power generator based on the drift step recovery diodes[C]//Asian Electromagnetics Conference. 2019.
    [14] 郭帆, 贾伟, 谢霖燊, 等. 基于半导体开关和LTD技术的高重频快沿高压脉冲源[J]. 强激光与粒子束, 2016, 28:055002. (Guo Fan, Jia Wei, Xie Linshen, et al. Measurement of the toroid magnetic switch[J]. High Power Laser and Particle Beams, 2016, 28: 055002
    [15] Ding Z J, Wang G, Su J, et al. A semiconductor opening switch based generator with pulse repetitive frequency of 4 MHz[J]. Review of Scientific Instruments, 2013, 84: 125102. doi: 10.1063/1.4833683
    [16] 方旭, 丁臻捷, 浩庆松, 等. 环形磁芯快脉冲动态参数测量方法[J]. 强激光与粒子束, 2004, 16(10):1345-1348. (Fang Xu, Ding Zhenjie, Hao Qingsong, et al. High power high repetitive frequency generator based on MOSFET and LTD technology[J]. High Power Laser and Particle Beams, 2004, 16(10): 1345-1348
    [17] Li Kejie, Xie Yanzhao, Zhang Fan. Vulnerability study of RS-232 interfaces caused by electromagnetic interferences with repetition rate[C]//2018 American Electromagnetics Symposium (AMEREM 2018). 2018.
  • 加载中
图(11)
计量
  • 文章访问数:  1514
  • HTML全文浏览量:  360
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-30
  • 修回日期:  2020-08-25
  • 刊出日期:  2020-09-29

目录

    /

    返回文章
    返回