留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四轨电磁发射器的背场增强仿真分析

连仲谋 冯刚 童思远 程军胜 熊玲

连仲谋, 冯刚, 童思远, 等. 四轨电磁发射器的背场增强仿真分析[J]. 强激光与粒子束, 2020, 32: 105003. doi: 10.11884/HPLPB202032.200135
引用本文: 连仲谋, 冯刚, 童思远, 等. 四轨电磁发射器的背场增强仿真分析[J]. 强激光与粒子束, 2020, 32: 105003. doi: 10.11884/HPLPB202032.200135
Lian Zhongmou, Feng Gang, Tong Siyuan, et al. Simulation analysis of background field enhancement of four-rail electromagnetic launcher[J]. High Power Laser and Particle Beams, 2020, 32: 105003. doi: 10.11884/HPLPB202032.200135
Citation: Lian Zhongmou, Feng Gang, Tong Siyuan, et al. Simulation analysis of background field enhancement of four-rail electromagnetic launcher[J]. High Power Laser and Particle Beams, 2020, 32: 105003. doi: 10.11884/HPLPB202032.200135

四轨电磁发射器的背场增强仿真分析

doi: 10.11884/HPLPB202032.200135
基金项目: 国防基础科研计划项目(JCKY2018130C008);国防科技基金项目(2201079)
详细信息
    作者简介:

    连仲谋(1996—),男,硕士研究生,从事电磁发射技术研究;lianzhongmou@mail.iee.ac.cn

    通讯作者:

    冯 刚(1976—),男,副教授,硕士生导师,从事电磁发射技术研究;daoyuanren@126.com

  • 中图分类号: TJ866;TM359.4

Simulation analysis of background field enhancement of four-rail electromagnetic launcher

  • 摘要: 针对四轨电磁发射器的背场增强方案的电感梯度进行了仿真分析。根据虚功原理,推导了背场下的四轨电磁发射器电感梯度公式。建立了三维背场仿真模型,分析了不同主、附轨道参数下电感梯度的变化规律。仿真结果表明:添加背场后,增大发射器口径、减小主附轨间距和附轨道截面积均能够实现系统电感梯度的提升;背场增强下,在主轨道高度达到口径的57%时,邻近效应已变得明显;相同附轨道截面积下,为增大系统电感梯度应优先减小附轨道厚度,为缓解电流邻近效应可优先减小附轨道高度;凹形截面附轨道能够明显改善电流邻近效应。
  • 图  1  背场下四轨电磁发射器的工作原理图

    Figure  1.  Working principle diagram of a four-rail electromagnetic launcher in the background field

    图  2  模型四分之一截面示意图

    Figure  2.  Schematic diagram of model’s quarter section

    图  3  电流密度分布

    Figure  3.  Current density distribution

    图  4  不同主轨道间距下最大电流密度

    Figure  4.  Maximum current density at different main orbital spacing

    图  5  附轨道截面积对电感梯度和最大电流密度的影响

    Figure  5.  Influence of the cross-sectional area of the additional rail on the inductance gradient and maximum current density

    图  6  三种不同的附轨道截面形状

    Figure  6.  Three different additional rail section shapes

    图  7  不同分段方式下附轨道的四分之一截面示意图

    Figure  7.  Schematic diagram of a quarter section of the additional rail under different segmental modes

    图  8  分段方式对电感梯度的影响

    Figure  8.  Effect of segmented mode on inductance gradient

    表  1  不同主轨道间距下电感梯度

    Table  1.   Inductance gradients under different main rail spacing

    spacing/mmprototype/(µH·m−1background field/(µH·m−1
    Maxwell’sCOMSOL’sMaxwell’sCOMSOL’s
    25 0.72363 0.74873 1.28442 1.3455
    30 0.87762 0.85420 1.60369 1.5579
    35 1.0041 0.94764 1.90189 1.75
    40 1.114346 1.03030 2.14893 1.925
    45 1.221838 1.10470 2.37343 2.0821
    下载: 导出CSV

    表  2  不同主附轨道间距下电感梯度

    Table  2.   Inductance gradients under different main and additional rail spacing

    main and additional rail spacing/mmMaxwell’s solution/(µH·m−1COMSOL’s solution/(µH·m−1
    21.57461.6911
    41.476181.5831
    61.394241.4913
    81.328611.413
    101.284421.3455
    下载: 导出CSV

    表  3  不同附轨道厚度下电感梯度

    Table  3.   Inductance gradients under different additional rail thicknesses

    additional rail
    thickness/mm
    Maxwell’s solution/
    (µH·m−1
    COMSOL’s solution/
    (µH·m−1
    Maximum current density/
    (109A·m−2
    41.387081.44092.0946
    61.348431.4062.0935
    81.323681.37462.0922
    101.284421.34552.0286
    121.251541.31992.0713
    下载: 导出CSV

    表  4  不同附轨道高度下电感梯度

    Table  4.   Inductance gradients at different additional rail heights

    additional rail
    altitude/(mm)
    Maxwell’s solution/
    (µH·m−1
    COMSOL’s solution/
    (µH·m−1
    Maximum current density/
    (109A·m−2
    101.354891.37752.1054
    151.306421.36412.0103
    201.284421.34552.0286
    251.270271.32491.9191
    301.197221.29981.7920
    下载: 导出CSV

    表  5  不同截面形状下电感梯度与电流密度

    Table  5.   Inductance gradient and current density under different section shapes

    cross section
    shape
    self inductance
    gradient/(µH·m−1
    mutual inductance
    gradient/(µH·m−1
    system inductance
    gradient/(µH·m−1
    maximum current
    density/(109A·m−2
    rectangular2.13226−0.423921.284422.0286
    convex2.12950−0.323251.483001.9780
    concave2.27081−0.452961.364891.8741
    下载: 导出CSV
  • [1] 马伟明, 鲁军勇. 电磁发射技术[J]. 国防科技大学学报, 2016, 38(6):1-5. (Ma Weiming, Lu Junyong. Electromagnetic launch technology[J]. Journal of National University of Defense Technology, 2016, 38(6): 1-5 doi: 10.11887/j.cn.201606001
    [2] 刘明, 舒涛, 薛新鹏. 新型四极轨道电磁发射器[J]. 火力与指挥控制, 2019, 44(3):23-27. (Liu Ming, Shu Tao, Xue Xinpeng. A new four-pole rail electromagnetic launcher[J]. Fire Control & Command Control, 2019, 44(3): 23-27 doi: 10.3969/j.issn.1002-0640.2019.03.004
    [3] 任波涛. 四轨电磁轨道炮概要设计与有限元分析[D]. 南京: 南京理工大学, 2011: 16-24.

    Ren Botao. General design and finite element analysis of four-rail electromagnetic railgun[D]. Nanjing: Nanjing University of Science and Technology, 2011: 16-24)
    [4] Yang Z Y, Feng G, Xue X P, et al. An electromagnetic rail launcher by quadrupole magnetic field for heavy intelligent projectiles[J]. IEEE Transactions on Plasma Science, 2017, 45(7): 1095-1100.
    [5] Liu S, Miao H, Guan J, et al. Investigation of electromagnetic characteristic in series-connected augmented quadrupole rail launcher[J]. IEEE Transactions on Plasma Science, 2020, 48(1): 299-304.
    [6] 童思远, 冯刚, 杨志勇, 等. 导弹四级磁场电枢轨道过盈配合参数优化[J]. 强激光与粒子束, 2019, 31:013201. (Tong Siyuan, Feng Gang, Yang Zhiyong, et al. Optimization of interference coordination parameters of the four-stage magnetic field armature rail of missiles[J]. High Power Laser and Particle Beams, 2019, 31: 013201 doi: 10.11884/HPLPB201931.180252
    [7] 杨志勇, 冯刚, 童思远, 等. 强脉冲电流四极磁场导轨瞬态动力学分析[J]. 弹箭与制导学报, 2019, 39(3):119-124, 129. (Yang Zhiyong, Feng Gang, Tong Siyuan, et al. Transient dynamic analysis of four-pole magnetic field guide rail with strong pulsed current[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(3): 119-124, 129
    [8] Novac B M, Smith I R, Enache M C, et al. Studies of a very high efficiency electromagnetic launcher[J]. Journal of Physics D, 2002, 35(12): 1447-1457.
    [9] Marshall R A, Wang Y. Railguns: Their science and technology[M]. Beijing: China Machine Press, 2004: 22-35.
    [10] Grover F W. Inductance calculations: working formulas and tables[M]. New York: Dover Publications, 1962: 22-66.
    [11] Kerrisk J F. Current diffusion and inductance calculations for rail-gun conductors[R]. USA: Los Alamos National Lab, 1981.
    [12] 周媛, 严萍, 袁伟群, 等. 电磁轨道发射装置中导轨几何参数对电感梯度的影响[J]. 电工电能新技术, 2009, 28(3):23-27, 35. (Zhou Yuan, Yan Ping, Yuan Weiqun, et al. Effect of geometric parameters of guide rail on inductance gradient in electromagnetic rail launcher[J]. Advanced Technology of Electrical Engineering and Energy, 2009, 28(3): 23-27, 35 doi: 10.3969/j.issn.1003-3076.2009.03.006
    [13] 刘守豹, 阮江军, 张亚东, 等. 增强型轨道炮电感梯度及其影响因素[J]. 电工电能新技术, 2009, 28(2):50-53. (Liu Shoubao, Ruan Jiangjun, Zhang Yadong, et al. Inductance gradient of enhanced railgun and its influencing factors[J]. Advanced Technology of Electrical Engineering and Energy, 2009, 28(2): 50-53 doi: 10.3969/j.issn.1003-3076.2009.02.012
    [14] 童思远, 冯刚, 连仲谋, 等. 四轨电磁发射器电感梯度影响因素分析[J]. 兵器装备工程学报, 2019, 40(12):221-224. (Tong Siyuan, Feng Gang, Lian Zhongmou, et al. Analysis of factors influencing the inductance gradient of four-rail electromagnetic launcher[J]. Journal of Ordnance and Equipment Engineering, 2019, 40(12): 221-224 doi: 10.11809/bqzbgcxb2019.12.043
    [15] 杨志勇, 冯刚, 刘瑜倩, 等. 增强型导弹四极场电磁轨道发射器研究[J]. 空军工程大学学报(自然科学版), 2019, 20(3):77-83. (Yang Zhiyong, Feng Gang, Liu Yuqian, et al. Research on enhanced missile four-pole field electromagnetic rail launcher[J]. Journal of Air Force Engineering University (Natural Science Edition), 2019, 20(3): 77-83
    [16] 徐蓉, 袁伟群, 成文凭, 等. 增强型电磁轨道发射器的电磁场仿真分析[J]. 高电压技术, 2014, 40(4):1065-1070. (Xu Rong, Yuan Weiqun, Cheng Wenping, et al. Electromagnetic field simulation analysis of enhanced electromagnetic rail launcher[J]. High Voltage Technology, 2014, 40(4): 1065-1070
    [17] 贺景瑞, 李小将. 增强型电磁轨道发射器电磁场和电感梯度仿真分析[J]. 兵工自动化, 2016, 37(8):78-82, 86. (He Jingrui, Li Xiaojiang. Simulation analysis of electromagnetic field and inductance gradient of enhanced electromagnetic rail launcher[J]. Ordnance Industry Automation, 2016, 37(8): 78-82, 86
    [18] Liebfried O, Schneider M, Stankevic T, et al. Velocity-induced current profiles inside the rails of an electric launcher[J]. IEEE Transactions on Plasma Science, 2013, 41(5): 1520-1525.
    [19] 王莹, 肖锋. 电炮原理[M]. 北京: 国防工业出版社, 1995.

    Wang Ying, Xiao Feng. Principle of electric gun[M]. Beijing: National Defense Industry Press, 1995
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  1192
  • HTML全文浏览量:  282
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-19
  • 修回日期:  2020-09-02
  • 刊出日期:  2020-09-29

目录

    /

    返回文章
    返回