留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低能二次电子对微波输能窗击穿现象的影响

张雪 王滔 倪鑫荣 蔡成林

张雪, 王滔, 倪鑫荣, 等. 低能二次电子对微波输能窗击穿现象的影响[J]. 强激光与粒子束, 2020, 32: 103008. doi: 10.11884/HPLPB202032.200170
引用本文: 张雪, 王滔, 倪鑫荣, 等. 低能二次电子对微波输能窗击穿现象的影响[J]. 强激光与粒子束, 2020, 32: 103008. doi: 10.11884/HPLPB202032.200170
Zhang Xue, Wang Tao, Ni Xinrong, et al. Effects of low energy secondary electrons on breakdown of dielectric window[J]. High Power Laser and Particle Beams, 2020, 32: 103008. doi: 10.11884/HPLPB202032.200170
Citation: Zhang Xue, Wang Tao, Ni Xinrong, et al. Effects of low energy secondary electrons on breakdown of dielectric window[J]. High Power Laser and Particle Beams, 2020, 32: 103008. doi: 10.11884/HPLPB202032.200170

低能二次电子对微波输能窗击穿现象的影响

doi: 10.11884/HPLPB202032.200170
基金项目: 湖南省自然科学基金项目(2017JJ3314);高功率微波技术重点实验室基金项目(6142605180304);国家自然科学基金项目(61771150)
详细信息
    作者简介:

    张 雪(1985—),女,博士,从事大功率微波器件击穿模拟研究;zhangxue.iecas@yahoo.com

  • 中图分类号: TM21

Effects of low energy secondary electrons on breakdown of dielectric window

  • 摘要: 在微波输能窗次级电子倍增效应的模拟研究中,往往忽视低能电子的作用。基于Monte Carlo算法,模拟输能窗次级电子倍增规律,研究了经典的Vaughan模型、Vincent模型和Rice模型三种二次电子发射模型下次级电子倍增效应的差异,通过拟合倍增敏感曲线,获得了低能电子对切向和法向电场作用下输能窗次级电子倍增效应的影响。模拟结果表明,当切向电场作用时,三个发射模型得到的敏感曲线几乎重合,低能电子对敏感曲线的影响甚微,其中Rice模型的敏感区域最大。当法向电场作用时,由Vincent模型拟合得到的敏感区域远大于其他两个模型。
  • 图  1  二次电子产额曲线

    Figure  1.  Secondary electron yield curves

    图  2  窗片表面次级电子倍增模型

    Figure  2.  Model of multipactor effect on dielectric window

    图  3  切向电场作用下窗片表面次级电子倍增敏感曲线

    Figure  3.  Susceptibility chart of multipactor on window surface in the tangential electric field

    图  4  切向电场作用时二次电子增长率随射频周期的变化图

    Figure  4.  Secondary electron growth rate vs RF cycle in the tangential electric field

    图  5  切向电场作用时电子平均能量的变化图

    Figure  5.  Time evolution of electron average energy in the tangential electric field

    图  6  切向电场作用时二次电子增长率随射频周期的变化图(考虑反射系数R

    Figure  6.  Secondary electron growth rate vs RF cycle in the tangential electric field(consider the reflection coefficient R

    图  7  切向电场作用时电子平均能量的变化图(考虑反射系数R

    Figure  7.  Time evolution of electron average energy in the tangential electric field(consider the reflection coefficient R

    图  8  法向电场作用下窗片表面次级电子倍增敏感曲线

    Figure  8.  Susceptibility chart of multipactor on window surface in the normal electric field

    图  9  法向电场作用时电子增长率随射频周期的变化图

    Figure  9.  Secondary electron growth rate vs RF cycle in the normal electric field

    图  10  法向电场作用时电子平均能量的变化图

    Figure  10.  Time evolution of electron average energy in the normal electric field

  • [1] Michizono S, Saito Y. Surface discharge and surface potential on alumina RF windows[J]. Vacuum, 2001, 60(1/2): 235-239.
    [2] Michizono S. Secondary electron emission from alumina RF windows[J]. IEEE Trans Dielectrics and Electrical Insulation, 2007, 14(3): 583-592. doi: 10.1109/TDEI.2007.369517
    [3] 张雪, 徐强, 王勇, 等. 高功率盒形窗内次级电子倍增效应[J]. 强激光与粒子束, 2016, 28:023004. (Zhang Xue, Xu Qiang, Wang Yong, et al. Secondary electron multiplier effect in high power box window[J]. High Power Laser and Particle Beams, 2016, 28: 023004 doi: 10.11884/HPLPB201628.023004
    [4] 范壮壮, 王洪广, 林舒, 等. 高功率微波介质窗表面电子倍增二维粒子模拟[J]. 强激光与粒子束, 2014, 26:063012. (Fan Zhuangzhuang, Wang Hongguang, Lin Shu, et al. High power microwave dielectric window surface electron multiplication two-dimensional particle simulation[J]. High Power Laser and Particle Beams, 2014, 26: 063012 doi: 10.11884/HPLPB201426.063012
    [5] 董烨, 董志伟, 周前红, 等. 两种外磁场形式对介质面次级电子倍增的抑制[J]. 强激光与粒子束, 2013, 25(10):2653-2658. (Dong Ye, Dong Zhiwei, Zhou Qianhong, et al. Inhibition of secondary electron multiplication on the dielectric surface by two external magnetic field forms[J]. High Power Laser and Particle Beams, 2013, 25(10): 2653-2658 doi: 10.3788/HPLPB20132510.2653
    [6] Vaughan J R M. A new formula for secondary emission yield[J]. IEEE Trans Electron Devices, 1989, 36(9): 1963-1967. doi: 10.1109/16.34278
    [7] Vaughan R. Secondary emission formulas[J]. IEEE Trans Electron Devices, 1993, 40(4): 830-833.
    [8] Cimino R, Collins I R, Furman M A, et al. Can low-energy electrons affect high-energy physics accelerators?[J]. Phys Rev Lett, 2004, 93: 014801. doi: 10.1103/PhysRevLett.93.014801
    [9] Vicente C, Mattes M, Wolk D, et al. Multipactor breakdown prediction in rectangular waveguide-based components[C]//IEEE MTT-S International Microwave Symposium Digest. 2005.
    [10] Furman M A, Pivi M T F. Probabilistic model for the simulation of secondary electron emission[J]. Physical Review Special Topics—Accelerators and Beams, 2002, 5: 124404. doi: 10.1103/PhysRevSTAB.5.124404
    [11] Rice S A, Verboncoeur J P. A comparison of multipactor predictions using two popular secondary electron models[J]. IEEE Trans Plasma Science, 2014, 42(6): 1484-1487. doi: 10.1109/TPS.2014.2321118
    [12] Victor E H. Fast, accurate secondary-electron yield measurements at low primary energies[J]. Review of Scientific Instruments, 1973, 44(4): 456-462. doi: 10.1063/1.1686155
    [13] Seviour R. The role of elastic and inelastic electron reflflection in multipactor discharges[J]. IEEE Trans Electron Devices, 2005, 52(8): 1927-1930. doi: 10.1109/TED.2005.851854
    [14] 彭凯, 李晶, 张颖军. 考虑低能电子影响的二次电子修正模型[J]. 中国空间科学技术, 2017, 37(2):32-38. (Peng Kai, Li Jing, Zhang Yingjun. A modified model for the emission of secondary electrons by low-energy electron impact[J]. Chinese Space Science and Technology, 2017, 37(2): 32-38
    [15] Semenov V E, Rakova E I, Anderson D, et al. Importance of reflection of low-energy electrons on multipactor susceptibility diagrams for narrow gaps[J]. IEEE Trans Plasma Science, 2009, 37(9): 1774-1781. doi: 10.1109/TPS.2009.2026754
    [16] Kishek R A, Lau Y Y. Multipactor discharge on a dielectric[J]. Phys Rev Lett, 1998, 80(1): 193-196. doi: 10.1103/PhysRevLett.80.193
    [17] Zhang X, Chang C, Gimeno B. Multipactor analysis in circular waveguides excited by TM01 mode[J]. IEEE Trans Electron Devices, 2019, 66(11): 4943-4951. doi: 10.1109/TED.2019.2941594
    [18] Semenov V, Nechaev V, Rakova E, et al. Multiphase regimes of single-surface multipactor[J]. Physics of Plasmas, 2005, 12: 073508. doi: 10.1063/1.1982138
  • 加载中
图(10)
计量
  • 文章访问数:  997
  • HTML全文浏览量:  207
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-18
  • 修回日期:  2020-08-20
  • 刊出日期:  2020-09-29

目录

    /

    返回文章
    返回