留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

W波段分布作用速调管的研制

韦莹 杨继涛 周军 李冬凤 欧阳佳佳 窦钺

韦莹, 杨继涛, 周军, 等. W波段分布作用速调管的研制[J]. 强激光与粒子束, 2020, 32: 103007. doi: 10.11884/HPLPB202032.200207
引用本文: 韦莹, 杨继涛, 周军, 等. W波段分布作用速调管的研制[J]. 强激光与粒子束, 2020, 32: 103007. doi: 10.11884/HPLPB202032.200207
Wei Ying, Yang Jitao, Zhou Jun, et al. Design of a W-band extended interaction klystron[J]. High Power Laser and Particle Beams, 2020, 32: 103007. doi: 10.11884/HPLPB202032.200207
Citation: Wei Ying, Yang Jitao, Zhou Jun, et al. Design of a W-band extended interaction klystron[J]. High Power Laser and Particle Beams, 2020, 32: 103007. doi: 10.11884/HPLPB202032.200207

W波段分布作用速调管的研制

doi: 10.11884/HPLPB202032.200207
基金项目: 国家重大科学仪器设备开发专项(2013YQ200503)
详细信息
    作者简介:

    韦 莹(1982—),女,硕士,高工,从事速调管器件研究;weiyingcetc@163.com

  • 中图分类号: TN122+.7

Design of a W-band extended interaction klystron

  • 摘要: 简要介绍了一种W波段分布作用速调管的设计思路、设计方案和模拟结果,并给出了该管的测试结果。该管采用大压缩比圆柱电子枪和永磁聚焦系统,阴极电压17 kV,阴极电流0.78 A;高频系统由5间隙和11间隙(输出腔)的分布作用腔组成,采用长短槽梯形结构。样管实现了脉冲输出功率大于2 kW、带宽500 MHz、增益40 dB、工作比5%等指标。
  • 图  1  电子轨迹EGUN仿真结果

    Figure  1.  Electron trajectories of the electron gun

    图  2  轴向磁场分布图

    Figure  2.  Axial field Bz

    图  3  二维聚焦电子轨迹图

    Figure  3.  2D electron trajectories with magnetic field

    图  4  电子注聚焦三维模拟结果

    Figure  4.  3D electron trajectories with magnetic field

    图  5  5间隙腔电场分布

    Figure  5.  Electric field in 5-gap cavity

    图  6  11间隙腔电场分布

    Figure  6.  Electric field in 11-gap cavity

    图  7  模拟的功率带宽曲线

    Figure  7.  Simulated power vs frequency

    图  8  输能窗结构和驻波比

    Figure  8.  Window structure and VSWR vs frequency

    图  9  输能窗实测驻波比

    Figure  9.  Measured VSWR of window vs frequency

    图  10  输出功率带宽曲线

    Figure  10.  Peak output power vs frequency

    表  1  主要性能指标

    Table  1.   Major requirements and performance of the extended interaction klystron (EIK)

    frequency
    band
    band width/
    MHz
    peak power/
    kW
    duty
    cycle/%
    voltage/
    kV
    efficiency/%gain/dBfocus modecooling modeweight/kg
    W-band500≥2≥5≤20≥15≥40permanent magnetic
    focusing
    water-cooling≤6
    下载: 导出CSV

    表  2  多间隙腔主要特性参数

    Table  2.   Major parameters of the resonance cavity

    cavityf /GHzR/Q)/ΩMlower frequency interval/GHzupper frequency interval/GHz
    5-gap95.621520.64612.87.35
    11-gap95.471840.4149.182.93
    下载: 导出CSV

    表  3  各腔频率

    Table  3.   Frequency of each cavity

    fcav1fcav2fcav3fcav4fcav5fcav6
    f0−0.1 GHzf0−0.35 GHzf0+0.3 GHzf0+0.6 GHzf0+0.8 GHzf0
    下载: 导出CSV
  • [1] Wessel-Berg T. A general theory of klystrons with arbitrary, extended interaction fields[R]. Hansen Laboratories ML-376, 1957.
    [2] Steer B, Roitman A, Horoyski P, et al. Advantages of extended interaction klystron technology at millimeter and sub-millimeter frequencies[C]//IEEE International Vacuum Electronics Conference. 2007: 1049-1053.
    [3] Steer B, Roitman A, Horoyski P, et al. High power millimeter-wave extended interaction klystrons for ground, airborne and space radars[C]//IEEE International Vacuum Electronics Conference. 2009.
    [4] Hyttinen M, Roitman A, Horoyski P, et al. A compact, high power, sub-millimeter-wave extended interaction klystron[C]//IEEE International Vacuum Electronics Conference. 2008: 297.
    [5] Berry D, Deng H, Dobbs R, et al. Practical aspects of EIK technology[J]. IEEE Trans Electron Devices, 2014, 61(6): 1830-1835. doi: 10.1109/TED.2014.2302741
    [6] Berry D, Roitman A, Steer B. State-of-the-art W-band extended interaction klystron for the CloudSat program[C]//IEEE International Vacuum Electronics Conference. 2004: 75-76.
    [7] Horoyski P, Berry D, Steer B. A 2 GHz bandwidth, high power W-band extended interaction klystron[C]//IEEE International Vacuum Electronics Conference. 2007: 151-152.
    [8] Zheng Yuan, Luhmann N C, Gamzina D, et al. Double multi-gap output cavity for low voltage ultra-compact W-band klystron[C]//IEEE International Vacuum Electronics Conference. 2019.
    [9] Zeng Zaojin, Zhou Lin, Li Wenjun, et al. Design and optimization of a W-band extended interaction klystron amplifier[C]//IEEE International Vacuum Electronics Conference. 2015.
    [10] Zhu Xiaofang, Jin Xiaolin, Huang Lili, et al. Study of a W-band sheet-beam extended interaction klystron[C]//IEEE International Vacuum Electronics Conference. 2015.
    [11] Chang Zhiwei, Meng Lin, Yin Yong, et al. Circuit design of a compact 5-kV W-band extended interaction klystron[J]. IEEE Trans Electron Devices, 2018, 65(3): 1179-1184. doi: 10.1109/TED.2018.2797051
    [12] Li Shasha, RuanCunjun, Member S, et al. Novel coupling cavities for improving the performance of G-band ladder-type multigap extended interaction klystrons[J]. IEEE Trans Plasma Science, 2020, 48(5): 1350-1356. doi: 10.1109/TPS.2020.2982957
    [13] 邢俊毅, 冯进军. 毫米波扩展互作用器件[J]. 真空电子技术, 2010(2):33-37. (Xing Junyi, Feng Jinjun. Millimeter wave extended interaction device[J]. Vacuum Electronics, 2010(2): 33-37
    [14] 丁耀根. 大功率速调管的设计制造与应用[M]. 北京: 国防工业出版社, 2010.

    Ding Yaogen. Design, manufacture and application of high power klystron[M]. Beijing: National Defense Industry Press, 2007
    [15] 黄传禄, 丁耀根, 王勇, 等. 多间隙耦合腔注波互作用计算分析[J]. 真空科学与技术学报, 2012, 32(7):605-610. (Huang Chuanlu, Ding Yaogen, Wang Yong, et al. Calculation and analysis of beam-wave interactions in multi-gap coupled cavity[J]. Chinese Journal of Vacuum Science and Technology, 2012, 32(7): 605-610
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1236
  • HTML全文浏览量:  378
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-29
  • 修回日期:  2020-09-11
  • 刊出日期:  2020-09-29

目录

    /

    返回文章
    返回