留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于HI-13串列加速器的中子俘获反应截面测量方法

张奇玮 贺国珠 栾广源 程品晶 阮锡超 朱兴华

张奇玮, 贺国珠, 栾广源, 等. 基于HI-13串列加速器的中子俘获反应截面测量方法[J]. 强激光与粒子束, 2021, 33: 046001. doi: 10.11884/HPLPB202133.200220
引用本文: 张奇玮, 贺国珠, 栾广源, 等. 基于HI-13串列加速器的中子俘获反应截面测量方法[J]. 强激光与粒子束, 2021, 33: 046001. doi: 10.11884/HPLPB202133.200220
Zhang Qiwei, He Guozhu, Luan Guangyuan, et al. Cross section measurement of neutron capture reaction based on HI-13 tandem accelerator[J]. High Power Laser and Particle Beams, 2021, 33: 046001. doi: 10.11884/HPLPB202133.200220
Citation: Zhang Qiwei, He Guozhu, Luan Guangyuan, et al. Cross section measurement of neutron capture reaction based on HI-13 tandem accelerator[J]. High Power Laser and Particle Beams, 2021, 33: 046001. doi: 10.11884/HPLPB202133.200220

基于HI-13串列加速器的中子俘获反应截面测量方法

doi: 10.11884/HPLPB202133.200220
基金项目: 国家自然科学基金项目(11605294,11675268,11790321,11975317)
详细信息
    作者简介:

    张奇玮(1982—),男,博士,副研究员,从事核数据测量研究;zqwvictor@126.com

  • 中图分类号: O571.5

Cross section measurement of neutron capture reaction based on HI-13 tandem accelerator

  • 摘要: 利用BaF2晶体对γ射线探测效率高、时间分辨率好的特点,研制了国内首套由40个BaF2探测器单元组成的γ全吸收型探测装置,用于在线测量中子俘获反应截面。在HI-13串列加速器上建立250~850 keV的中子源,其0°角的源强约为5.09×106 n/(Sr·s),使用γ全吸收型探测装置,通过瞬发γ射线法测量了93Nb、197Au、natC和空样品的实验数据。根据BaF2探测器信号的特征,采用了基线补偿、软件阈值设置、时间窗限定、脉冲幅度积分增长率设置和快慢成分比设置等多种数字化波形分析方法,剔除噪声信号以提高效应本底比。以197Au样品数据为标准,natC样品数据为样品相关性本底,空样品数据为样品无关性本底,采用相对测量法得到了93Nb的中子俘获反应截面实验数据。通过与ENDF评价库数据的比较,验证了测量装置和技术方法的可行性。
  • 图  1  GTAF的五棱与六棱BaF2晶体形状

    Figure  1.  Shape of the pentagonal and hexagonal BaF2 crystal for GTAF

    图  2  GTAF测量中子俘获反应截面实验原理图

    Figure  2.  Experimental diagram of measurement of neutron capture cross section based on GTAF

    图  3  中子源的飞行时间与脉冲幅度积分值的二维谱

    Figure  3.  Time of flight versus integral of pulse height spectrum from neutron source

    图  4  中子源能谱比较

    Figure  4.  Comparison of energy spectrum of neutron source

    图  5  数据获取系统采集到的数字化信号波形

    Figure  5.  Digital waveforms of signals from DAQ

    图  6  能量与脉冲幅度积分增长率的二维谱

    Figure  6.  Energy versus rate of increase of pulse height integral spectrum

    图  7  能量与快成分/总成分的二维谱

    Figure  7.  Energy versus ratio of fast to total component spectrum

    图  8  BaF2探测器单元能谱的原始数据与处理结果的比较

    Figure  8.  Comparison with original energy spectrum and analytic results of BaF2 detector module

    图  9  γ多重性的原始数据与处理结果的比较

    Figure  9.  Comparison with original data and analytic results of γ multiplicity

    图  10  加和能谱的原始数据与数据处理结果的比较

    Figure  10.  Comparison with original data and analytic results of sum energy spectrum

    图  11  中子俘获反应的加和能谱

    Figure  11.  Sum energy spectrum of neutron capture reaction

    图  12  中子俘获反应飞行时间效应谱

    Figure  12.  Effect time of flight (TOF) spectrum of neutron capture reaction

    图  13  93Nb中子俘获反应截面测量结果

    Figure  13.  Measurement results of 93Nb neutron capture reaction cross section

    表  1  在线实验样品参数

    Table  1.   Sample parameter of on-line experiment

    sampledensity/(g·cm−3diameter/mmthickness/mmpurity/%measure time/min
    93Nb 8.57 20 1 99.99 573
    197Au 19.32 20 1 99.99 664
    natC 2.3 20 1.5 99.99 626
    blank 288
    下载: 导出CSV

    表  2  在线实验测量结果

    Table  2.   Measurement results of on line experiment

    energy bin/MeVcross section/mbenergy resolution/%uncertainty/%
    0.249·0.30245.146.3722.3
    0.303·0.37442.937.0625.8
    0.375·0.47541.687.9127.3
    0.476·0.62439.648.9930.6
    0.625·0.85736.5510.4333.6
    下载: 导出CSV

    表  3  不确定度分析

    Table  3.   Analysis of uncertainties

    source of
    uncertainties
    statistical uncertainty
    of 93Nb
    statistical uncertainty
    of 197Au
    statistical uncertainty
    of natC
    statistical uncertainty
    of blank
    normalization of
    beam integral
    uncertainty/%10~157~1010~157~103
    source of uncertaintiesdetection efficiencyother backgroundsneutron energystandard cross section of 197Autotal
    uncertainty/%1512.8~20.81~422.3~33.6
    下载: 导出CSV
  • [1] Plag R, Heil M, Kappeler F, et al. An independent measurement of the 12C(α, γ)16O cross section with the Karlsruhe 4π BaF2 detector[J]. Nuclear Physics A, 2005, 758: 415-418. doi: 10.1016/j.nuclphysa.2005.05.076
    [2] Guerrero C, Abbondanno U, Aerts G, et al. The n_TOF Total Absorption Calorimeter for neutron capture measurements at CERN[J]. Nuclear Instruments and Methods in Physics Research A, 2009, 608: 424-433. doi: 10.1016/j.nima.2009.07.025
    [3] Reifarth R, Esch E I, Alpizar-Vicente A, et al. (n,γ) measurements on radioactive isotopes with DANCE[J]. Nuclear Instruments and Methods in Physics Research B, 2005, 241: 176-179. doi: 10.1016/j.nimb.2005.07.022
    [4] Colonna N, Abbondanno U, Aerts G, et al. Neutron cross-sections for next generation reactors: New data from n_TOF[J]. Applied Radiation and Isotopes, 2010, 68: 643-646. doi: 10.1016/j.apradiso.2010.01.003
    [5] Belloni F, Calviani M, Colonna N, et al. Measurement of the neutron-induced fission crosssection of 241Am at the time-of-flight facility n_TOF[J]. European Physical Journal A, 2013, 49: 49-54. doi: 10.1140/epja/i2013-13049-0
    [6] Jandel M, Bredeweg TA, Bond EM, et al. New precision measurements of the 235U(n,γ) cross section[J]. Physical Review Letters, 2012, 109: 202506. doi: 10.1103/PhysRevLett.109.202506
    [7] Zhong Qiping, Zhou Zuying, Tang Hongqing, et al. New detector system to measure (n,γ) reaction cross section precisely in China[J]. Chinese Physics C, 2008, 32(S2): 102-105.
    [8] 马霄云, 仲启平, 周祖英, 等. 大体积氟化钡的性能测试[J]. 原子能科学技术, 2009, 43(2):180-184. (Ma Xiaoyun, Zhong Qiping, Zhou Zuying, et al. Performance test of large BaF2 detector[J]. Atomic Energy Science and Technology, 2009, 43(2): 180-184
    [9] 黄兴, 贺国珠, 程品晶, 等. (n, γ)反应实验研究中的中子屏蔽设计[J]. 原子核物理评论, 2015, 32(2):208-211. (Huang Xing, He Guozhu, Chen Pingjing, et al. Neutron shielding design for experiment research of (n, γ) reaction[J]. Nuclear Physics Review, 2015, 32(2): 208-211 doi: 10.11804/NuclPhysRev.32.02.208
    [10] 贺国珠. (n, γ)反应截面测量用4π BaF2闪烁体探测器研制[D]. 兰州: 兰州大学, 2006: 17-19.

    He Guozhu. The Development of a 4pi BaF2 Scintillator detector used for the measurement of (n, γ) reaction cross-sections[D]. Lanzhou: Lanzhou University, 2006: 17-19
    [11] 苏明, 仲启平, 郑玉来, 等. γ全吸收型探测装置中子束流监视器的Geant4模拟[J]. 原子能科学技术, 2009, 43(10):949-950. (Su Ming, Zhong Qiping, Zheng Yulai, et al. Geant4 simulation of neutron beam monitor in gamma-ray total absorption facility[J]. Atomic Energy Science and Technology, 2009, 43(10): 949-950
    [12] 张奇玮, 贺国珠, 阮锡超, 等. 锂玻璃探测器中子探测效率的刻度[J]. 原子核物理评论, 2013, 30(2):99-103. (Zhang Qiwei, He Guozhu, Ruan Xichao, et al. Calibration of neutron detection efficiency of Li-glass detector[J]. Nuclear Physics Review, 2013, 30(2): 99-103 doi: 10.11804/NuclPhysRev.30.02.099
    [13] 彭猛, 贺国珠, 骆宏, 等. 4πBaF2装置的触发系统研究[J]. 原子能科学技术, 2016, 50(10):1866-1870. (Peng Meng, He Guozhu, Luo Hong, et al. Study of trigger system for γ-ray total absorption BaF2 facility[J]. Atomic Energy Science and Technology, 2016, 50(10): 1866-1870 doi: 10.7538/yzk.2016.50.10.1866
    [14] 赵健, 贺国珠, 颜拥军, 等. BaF2闪烁体探测器信号数字化方法研究[J]. 原子能科学技术, 2013, 47(4):669-673. (Zhao Jian, He Guozhu, Yan Yongjun, et al. Digital method on signals of BaF2 scintillator detector[J]. Atomic Energy Science and Technology, 2013, 47(4): 669-673 doi: 10.7538/yzk.2013.47.04.0669
    [15] 张奇玮, 贺国珠, 黄兴, 等. 基于Gamma全吸收型BaF2探测装置的数据获取系统[J]. 原子能科学技术, 2016, 50(3):536-540. (Zhang Qiwei, He Guozhu, Huang Xing, et al. Data acquisition system based on gamma-ray total absorption facility[J]. Atomic Energy Science and Technology, 2016, 50(3): 536-540 doi: 10.7538/yzk.2016.50.03.0536
    [16] Amorini F, Filippo E D, Guazzoni P, et al. Digital pulse shape acquisition from BaF2: Preliminary results[J]. 2006 IEEE Nuclear Science Symposium Conference Record, 2006: 440-443.
    [17] Nelson M A, Rooney B D, Dinwiddie D R, et al. Analysis of digital timing methods with BaF2 scintillators[J]. Nuclear Instruments and Methods in Physics Research A, 2003, 505: 324-327. doi: 10.1016/S0168-9002(03)01078-7
    [18] 张奇玮, 贺国珠, 黄兴, 等. 基于Gamma全吸收型BaF2探测装置的波形分析和定时方法研究[J]. 原子能科学技术, 2014, 48(S1):70-75. (Zhang Qiwei, He Guozhu, Huang Xing, et al. Study of waveform analysis and timing method for gamma-ray total absorption facility[J]. Atomic Energy Science and Technology, 2014, 48(S1): 70-75
    [19] 石斌, 彭猛, 张奇玮, 等. 中子俘获反应截面在线测量技术研究[J]. 原子能科学技术, 2018, 52(9):1537-1544. (Shi Bing, Peng Meng, Zhang Qiwei, et al. Online method for neutron capture reaction cross-section measurement[J]. Atomic Energy Science and Technology, 2018, 52(9): 1537-1544 doi: 10.7538/yzk.2017.youxian.0817
    [20] https://www-nds.iaea.org/exfor/endf.htm
    [21] Poenitz W P. Fast neutron capture and activation cross sections of niobium isotopes[R]. Argonne National Laboratory Reports, 1974, 8.
    [22] Mu Yunshan, Xu Haishan, Xiang Zhengyu, et al. Fast neutron radiative capture cross sections of natural niobium and molybdenum[J]. Nuclear Science and Engineering, 1991, 108(3): 302-311.
    [23] Stavisskii Y Y, Tolstikov V A. Fast neutron radiative capture cross sections of V-51 Nb-93 W-186 and Tl-205[J]. Atomnaya Energiya, 1960, 9(5): 401-409.
    [24] Stavisskij J J, Shapar A V. Fast neutron capture cross section for Niobium Nickel and Iron[J]. Atomnaya Energiya, 1961, 10(3): 264-271.
    [25] Chen Yonghao, Luan Guangyuan, BaoJie, et al. Neutron energy spectrum measurement of the Back-n white neutron source at CSNS[J]. European Physical Journal A, 2019, 55: 115-124. doi: 10.1140/epja/i2019-12808-1
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  1013
  • HTML全文浏览量:  430
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-28
  • 修回日期:  2021-01-18
  • 网络出版日期:  2021-03-10
  • 刊出日期:  2021-05-02

目录

    /

    返回文章
    返回