留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晶闸管反向并联二极管组件的关断特性研究

李涛 张星汝 何孟兵 刘俊 冯冰洋

李涛, 张星汝, 何孟兵, 等. 晶闸管反向并联二极管组件的关断特性研究[J]. 强激光与粒子束, 2021, 33: 045002. doi: 10.11884/HPLPB202133.200239
引用本文: 李涛, 张星汝, 何孟兵, 等. 晶闸管反向并联二极管组件的关断特性研究[J]. 强激光与粒子束, 2021, 33: 045002. doi: 10.11884/HPLPB202133.200239
Li Tao, Zhang Xingru, He Mengbing, et al. Research on shutdown characteristics of thyristor reverse parallel diodes[J]. High Power Laser and Particle Beams, 2021, 33: 045002. doi: 10.11884/HPLPB202133.200239
Citation: Li Tao, Zhang Xingru, He Mengbing, et al. Research on shutdown characteristics of thyristor reverse parallel diodes[J]. High Power Laser and Particle Beams, 2021, 33: 045002. doi: 10.11884/HPLPB202133.200239

晶闸管反向并联二极管组件的关断特性研究

doi: 10.11884/HPLPB202133.200239
详细信息
    作者简介:

    李 涛(1984—),男,硕士,助理研究员,从事特种电源技术研究;litao6831@caep.cn

    通讯作者:

    张星汝(1996—),女,硕士,从事脉冲功率技术研究;zhangxingru@hust.edu.cn

  • 中图分类号: TM832

Research on shutdown characteristics of thyristor reverse parallel diodes

  • 摘要: 晶闸管具有控制特性好,寿命长、体积小、噪声小等优点,是高功率脉冲电源的重要器件。但晶闸管在高电压、大电流、重频工作条件下使用时,会出现晶闸管无法在特定时间内关断的情况,导致脉冲电源出现故障。为提高晶闸管在重频下的工作能力,本文对脉冲功率晶闸管组件的关断过程进行研究。基于晶闸管的关断原理和实验分析,在相同$ {\rm{d}}i/{\rm{d}}t$下,增大电流峰值$ {I_{\rm{p}}}$对晶闸管反向恢复特性影响较小,并得到了晶闸管的反向恢复时间、反向恢复电荷和${\rm{d}}i/{\rm{d}}t$的关系。根据实验数据拟合晶闸管反向恢复电流波形,修改了电流指数函数模型,可以更好地拟合反向恢复电流。
  • 图  1  晶闸管关断电压电流波形

    Figure  1.  Thyristor shutdown voltage and current waveforms

    图  2  晶闸管电流指数函数模型

    Figure  2.  Thyristor current exponential function model

    图  3  关断实验电路图

    Figure  3.  Shutdown experiment circuit diagram

    图  4  不同di/dt下晶闸管反向恢复电流

    Figure  4.  Reverse recovery current of thyristor under different di/dt

    图  5  不同电流峰值${I_{\rm{p}}}$下晶闸管的反向恢复电流

    Figure  5.  Reverse recovery current of thyristor under different current peaks ${I_{\rm{p}}}$

    图  6  开关连接图

    Figure  6.  Switch connection diagram

    图  7  1500 V晶闸管关断电压电流波形

    Figure  7.  Thyristor shutdown voltage and current waveform at 1500 V

    图  8  ${Q_{{\rm{rr}}}}$${\rm{d}}i/{\rm{d}}t$的关系

    Figure  8.  Relationship between ${Q_{{\rm{rr}}}}$ and ${\rm{d}}i/{\rm{d}}t$

    图  9  ${I_{{\rm{RM}}}}$${Q_{{\rm{rr}}}}$${\rm{d}}i/{\rm{d}}t$的关系

    Figure  9.  Relationship between ${I_{{\rm{RM}}}}$, ${Q_{{\rm{rr}}}}$ and ${\rm{d}}i/{\rm{d}}t$

    图  10  ${t_{{\rm{rr}}}}$${I_{{\rm{RM}}}}$${Q_{{\rm{rr}}}}$的关系

    Figure  10.  Relationship between ${t_{{\rm{rr}}}}$, ${I_{{\rm{RM}}}}$ and ${Q_{{\rm{rr}}}}$

    图  11  1500 V关断计算波形和实验波形对比

    Figure  11.  Calculated waveform and experimental waveform comparison for 1500 V shutdown

    图  12  修正模型关断计算波形和实验波形对比

    Figure  12.  Shutdown waveform comparison between modified calculation and experiment

    表  1  不同电压下晶闸管关断数据

    Table  1.   Thyristor shutdown data at different voltages

    U/VIp/AIRM/AtS/μstf/μsdi/dt/(A·μs−1trr/μsQrr/μC
    350 183.5 42.35 22.3 42 1.90 64.3 1245.6
    400 200.8 50.2 25.4 43.3 1.98 68.7 1582.6
    450 247.8 53.33 21.1 54.7 2.53 75.8 1831.0
    550 313.7 69.02 20.8 57.5 3.32 78.3 2443.3
    650 363.9 78.43 21 50.5 3.73 71.5 2545.6
    800 461.2 90.98 22.4 65.3 4.06 87.7 3602.0
    1000 571 109.8 21.6 65.3 5.08 86.9 4303.2
    1200 683.9 125.5 23.1 62 5.43 85.1 4832.6
    1050 577.3 119.2 19.8 74.6 6.02 94.4 5046.3
    1550 859.6 156.9 21.9 77.1 7.16 99 6977.6
    下载: 导出CSV

    表  2  关断计算数据

    Table  2.   Shutdown calculation data

    di/dt/(A/μs)Qrr/μCIRM/Atrr/μs
    calculated value6.816155.22147.1892.96
    experimental value6.816071.8150.689.4
    下载: 导出CSV
  • [1] 卢茨 J, Schlangenotto H, Scheuermann U, 等. 功率半导体器件: 原理、特性和可靠性[M]. 卞抗, 杨莺, 刘静, 译. 北京: 机械工业出版社, 2013.

    Lutz J, Schlangenotto H, Scheuermann U, et al. Semiconductor power devices: physics, characteristics, reliability[M]. Bian Kang, Yang Ying, Liu Jing, trans. Beijing: China Machine Press, 2013
    [2] 蓝元良, 汤广福, 印永华, 等. 串联晶闸管反向恢复暂态过程的研究[J]. 电网技术, 2006, 30(16):15-19. (Lan Yuanliang, Tang Guangfu, Yin Yonghua, et al. Study on transient of reverse recovery of series thyristors[J]. Power System Technology, 2006, 30(16): 15-19 doi: 10.3321/j.issn:1000-3673.2006.16.004
    [3] 潘军. 一种高性能快速晶闸管串联使用保护技术及其应用[J]. 工业加热, 2005, 34(5):48-50. (Pan Jun. A protection technique and application of high performance fast thyristors in serial[J]. Industrial Heating, 2005, 34(5): 48-50 doi: 10.3969/j.issn.1002-1639.2005.05.015
    [4] 王毅, 石新春, 李和明, 等. 基于统一离散时域建模法的晶闸管串联运行暂态仿真[J]. 电力系统自动化, 2004, 28(18):41-44. (Wang Yi, Shi Xinchun, Li Heming, et al. Cascaded thyristors simulation based on unified discrete time-domain modeling[J]. Automation of Electric Power Systems, 2004, 28(18): 41-44 doi: 10.3321/j.issn:1000-1026.2004.18.008
    [5] 邹刚, 陈祥训, 郑健超, 等. 用于电力电子系统暂态过程分析的晶闸管宏模型[J]. 中国电机工程学报, 1999, 19(6):1-5. (Zou Gang, Chen Xiangxun, Zheng Jianchao, et al. Macro-model of thyristor for transient analysis in power electronic system[J]. Proceedings of the CSEE, 1999, 19(6): 1-5 doi: 10.3321/j.issn:0258-8013.1999.06.001
    [6] Shammas N Y A, Rahimo M T, Hoban P T. Effects of external operating conditions on the reverse recovery behaviour of fast power diodes[J]. EPE Journal, 1999, 8(1/2): 11-18.
    [7] 岳珂, 孙玮, 刘隆晨, 等. 载流子寿命与高压晶闸管反向恢复特性的关系[J]. 高电压技术, 2017, 43(12):3944-3949. (Yue Ke, Sun Wei, Liu Longchen, et al. Correlations between carrier lifetime and reverse recovery characteristics of high power thyristors[J]. High Voltage Engineering, 2017, 43(12): 3944-3949
    [8] Matteson F M, Ruhl H J, Shafer P O, et al. The recovered charge characteristics of high power thyristors[J]. IEEE Transactions on Industry Applications, 1976, IA-12(3): 305-311. doi: 10.1109/TIA.1976.349448
    [9] 魏伟, 孙晓明. 晶闸管反向恢复电流参数的计算[J]. 武汉城市建设学院学报, 1992, 9(1/2):91-97. (Wei Wei, Sun Xiaoming. Calculation of thyristor reverse recovery current parameters[J]. Journal of Wuhan Urban Construction Institute, 1992, 9(1/2): 91-97
    [10] 戴玲, 田书耘, 金超亮, 等. 脉冲功率晶闸管反向恢复特性[J]. 强激光与粒子束, 2016, 28:115001. (Dai Ling, Tian Shuyun, Jin Chaoliang, et al. Reverse recovery characteristics of pulse power thyristor[J]. Power Laser and Particle Beams, 2016, 28: 115001 doi: 10.11884/HPLPB201628.151056
    [11] Lee C W, Park S B. Design of a thyristor snubber circuit by considering the reverse recovery process[J]. IEEE Transactions on Power Electronics, 1988, 3(4): 440-446. doi: 10.1109/63.17965
    [12] 刘杰, 张静, 曹均正, 等. 直流输电换流阀阻尼系统特性研究[J]. 中国电机工程学报, 2012, 32(30):16-22. (Liu Jie, Zhang Jing, Cao Junzheng, et al. Research of damping system characteristics for HVDC converter valves[J]. Proceedings of the CSEE, 2012, 32(30): 16-22
    [13] 仝玮, 李华, 傅鹏, 等. 一种脉冲电流工况下晶闸管缓冲电路的优化方法[J]. 强激光与粒子束, 2020, 32:025015. (Tong Wei, Li Hua, Fu Peng, et al. A parameter optimization method of snubber circuit of thyristor under pulse current working condition[J]. High Power Laser and Particle Beams, 2020, 32: 025015 doi: 10.11884/HPLPB202032.190280
    [14] Chokhawala R S, Carroll E I. A snubber design tool for P-N junction reverse recovery using a more accurate simulation of the reverse recovery waveform[J]. IEEE Transactions on Industry Applications, 1991, 27(1): 74-84. doi: 10.1109/28.67534
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  1229
  • HTML全文浏览量:  298
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-15
  • 修回日期:  2021-02-18
  • 网络出版日期:  2021-03-11
  • 刊出日期:  2021-05-02

目录

    /

    返回文章
    返回