留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大功率锂离子电池储能电源系统的研制与应用

任先文 力军 龚胜刚 谭志远 于婷 孙会

任先文, 力军, 龚胜刚, 等. 大功率锂离子电池储能电源系统的研制与应用[J]. 强激光与粒子束, 2021, 33: 039001. doi: 10.11884/HPLPB202133.200248
引用本文: 任先文, 力军, 龚胜刚, 等. 大功率锂离子电池储能电源系统的研制与应用[J]. 强激光与粒子束, 2021, 33: 039001. doi: 10.11884/HPLPB202133.200248
Ren Xianwen, Li Jun, Gong Shenggang, et al. Development and application of a high power energy-storage system with lithium-ion batteries[J]. High Power Laser and Particle Beams, 2021, 33: 039001. doi: 10.11884/HPLPB202133.200248
Citation: Ren Xianwen, Li Jun, Gong Shenggang, et al. Development and application of a high power energy-storage system with lithium-ion batteries[J]. High Power Laser and Particle Beams, 2021, 33: 039001. doi: 10.11884/HPLPB202133.200248

大功率锂离子电池储能电源系统的研制与应用

doi: 10.11884/HPLPB202133.200248
基金项目: 国防科工局重大基础科研项目(JCKY2016203A018)
详细信息
    作者简介:

    任先文(1974—),男,硕士,高级工程师,从事特种电源研究及应用、高压脉冲功率技术研究及应用研究;rxw68@sina.com

  • 中图分类号: TM911

Development and application of a high power energy-storage system with lithium-ion batteries

  • 摘要: 采用高功率高安全性的磷酸铁锂电芯作为储能元件,研制了一种在车载平台中应用的大功率储能电源。在储能电源中配置了高性能的电池采样和主动均衡模块,以及充放电管理系统,可以有效地提高系统可靠性和使用寿命。研制过程中,大功率储能电源进行了大量的工程化试验考核,包括运输安全性、环境适应性、维修性和任务可靠性等工程化指标。最后,21台储能电源在超过55 ℃的高温地区考核超过12个月,储能电源系统的可靠性得到验证。
  • 图  1  大功率储能电源系统图

    Figure  1.  Diagraph of the high power energy storage power supply system

    图  2  储能电源电气原理图

    Figure  2.  Schematic diagram of the energy storage power supply

    图  3  电池单体功率放电曲线

    Figure  3.  Discharging curves of the cells

    图  4  单体电池循环寿命曲线

    Figure  4.  Recycled life curve of the cells

    图  5  电池组热仿真图

    Figure  5.  Thermal simulation diagram of the battery pack

    图  6  电池采样和均衡模块框图

    Figure  6.  Diagram of the battery sampling and equivalent modules

    表  1  FP1780123PB电芯技术参数

    Table  1.   Characteristics of the FP1780123PB cell

    No.nameparameter
    1 capacity 8 A·h
    2 voltage 3.2 V
    3 opening voltage 3.2~3.4 V
    4 resistance ≤1.3 mΩ
    5 weight (0.32±0.02) kg
    6 charging cutting voltage 3.65 V
    7 operation temperature charging: 0~50 ℃; Discharging: −20~60 ℃
    8 restore temperature −20~60 ℃
    9 maximum continuum charginge current 3 C
    10 discharging cutoff voltage 2.5 V
    11 maximum continuous discharginge current ≥10 C
    12 discharging pulse current/time 700 A/3.5 s
    下载: 导出CSV

    表  2  储能电源系统可靠性计算

    Table  2.   Caculated reliability of the energy storage system

    No.component namefailure rate/h−1numbertotal failure rate/h−1
    1concentration controller1.42×10−511.84×10−4
    2battery management controller7.86×10−67
    3battery module A8.37×10−67
    4battery module A8.37×10−67
    下载: 导出CSV

    表  3  储能电源模块的体积和重量

    Table  3.   Size and weight of energy storage power supply modules

    No.module designnumberweight/kgsize
    1concentration controller125.6482 mm×128 mm×593 mm
    2battery management controller722.5482 mm×85 mm×595 mm
    3battery module1454.0327 mm×195 mm×750 mm
    下载: 导出CSV
  • [1] 上海空间电源研究所. 化学电源技术[M]. 北京: 科学出版社, 2015: 312-313.

    Institute of the Shanghai Space Power. Chemistry power supply technology[M]. Beijing: Science Press, 2015: 312-313
    [2] 胡信国. 动力电池技术与应用[M]. 2版. 北京: 化学工业出版社, 2013: 126-127.

    Hu Xinguo. Dynamic battery technology and application[M]. 2nd ed. Beijing: Chemical Industry Press, 2013: 126-127
    [3] 张洪斌, 曾乐才, 廖文俊, 等. 锂电池产业概况及其在储能中的应用[J]. 装备机械, 2012(1):38-44. (Zhang Hongbin, Zeng Lecai, Liao Wenjun, et al. Overview of the lithium battery and application in energy storage filed[J]. Mechanical Device, 2012(1): 38-44
    [4] 巨国娇, 胡洁, 王辉. 磷酸铁锂电池储能系统平抑风电功率波动研究[J]. 电力与能源, 2016, 37(5):582-586. (Ju Guojiao, Hu Jie, Wang Hui. Application of LFP battery energy storage system in smoothing wind power fluctuation[J]. Power & Energy, 2016, 37(5): 582-586
    [5] 聂伟民, 向永坤, 蔡之洲. 车用锂电池新型双向主动均衡控制方案设计[J]. 电源技术, 2017, 41(8):1171-1173, 1197. (Nie Weimin, Xiang Yongkun, Cai Zhizhou. Design of active bidirectional balancing technology on lithium battery for electrical vehicle[J]. Chinese Journal of Power Sources, 2017, 41(8): 1171-1173, 1197 doi: 10.3969/j.issn.1002-087X.2017.08.021
    [6] 桂涵东. 锂电池主动均衡管理与效率优化[D]. 南京: 南京航空航天大学, 2016.

    Gui Handong. Active balancing management and efficiency optimization for lithium-ion batteries[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016
    [7] 姚京, 詹昌辉, 韩廷, 等. 车载动力锂电池组主动均衡系统设计[J]. 电子技术应用, 2015, 41(1):129-131. (Yao Jing, Zhan Changhui, Han Ting, et al. A design of on-board power lithium batteries active balancing system[J]. Application of Electronic Technique, 2015, 41(1): 129-131
    [8] 欧阳家俊. 动力磷酸铁锂电池均衡系统设计与研究[D]. 成都: 西南交通大学, 2015.

    Ouyang Jiajun. Research and design about equalization system for power LiFePO4 batteries[D]. Chengdu: Southwest Jiaotong University, 2015
    [9] 俞越. 串联磷酸铁锂电池组均衡方案研究[D]. 合肥: 合肥工业大学, 2016.

    Yu Yue. Research on equalization of LiFePO4 series battery[D]. Hefei: Hefei University of Technology, 2016
    [10] 胡晓敏, 王顺利, 夏承成, 等. 大功率锂电池组快速均衡模块核心技术研究[J]. 电源世界, 2015(11):26-28. (Hu Xiaomin, Wang Shunli, Xia Chengcheng, et al. Core technology of modularized rapid equalizer forhigh-power lithium battery pack[J]. The World of Power Supply, 2015(11): 26-28
    [11] 邵丹, 骆相宜, 钟灿鸣, 等. 动力锂离子电池安全性研究的进展[J]. 电池, 2020, 50(1):83-86. (Shao Dan, Luo Xiangyi, Zhong Canming, et al. Progress in safety research of automotive Li-ion battery[J]. Battery Bimonthly, 2020, 50(1): 83-86
    [12] 吴战宇, 顾立贞, 于尊奎, 等. 锂离子电池的安全性及风险分析[J]. 电池工业, 2012, 17(5):310-315. (Wu Zhanyu, Gu Lizhen, Yu Zunkui, et al. Safety and hazards analysis of Li-ion battery[J]. Chinese Battery Industry, 2012, 17(5): 310-315 doi: 10.3969/j.issn.1008-7923.2012.05.013
    [13] 唐致远, 陈玉红, 卢星河, 等. 锂离子电池安全性的研究[J]. 电池, 2006, 36(1):74-76. (Tang Zhiyuan, Chen Yuhong, Lu Xinghe, et al. Research in safety characteristics of Li-ion batteries[J]. Battery Bimonthly, 2006, 36(1): 74-76 doi: 10.3969/j.issn.1001-1579.2006.01.029
    [14] 王彩娟, 宋杨, 金挺, 等. 锂离子电池安全测试条件的研究[J]. 电池, 2013, 43(2):98-100. (Wang Caijuan, Song Yang, Jin Ting, et al. Investigation of test requirement for safety of Li-ion battery[J]. BatteryBimonthly, 2013, 43(2): 98-100 doi: 10.3969/j.issn.1001-1579.2013.02.011
    [15] 彭茂林, 高孔军, 孙吉宏, 等. 某型锂电池安全性试验研究[J]. 电源技术, 2020, 44(1):30-32. (Peng Maolin, Gao Kongjun, Sun Jiehong, et al. Experimental research on security of a certain lithium battery[J]. Chinese Journal of Power Sources, 2020, 44(1): 30-32 doi: 10.3969/j.issn.1002-087X.2020.01.008
    [16] 李志华, 唐志雄. 通信用磷酸铁锂电池的节能减排应用[J]. 电源世界, 2011(8):54-57. (Li Zhihua, Tang Zhixiong. Energy-saving and emission-reduction application of battery of lithium iron phosphate for communication[J]. The World of Power Supply, 2011(8): 54-57
    [17] 陶海华, 陈相, 赵颐晴, 等. 大型锂电池及锂电池组运输的国际规则[J]. 电池, 2015, 45(6):329-331. (Tao Haihua, Chen Xiang, Zhao Yiqing, et al. International transportation rules of large lithium cells and lithium batteries[J]. Battery Bimonthly, 2015, 45(6): 329-331 doi: 10.3969/j.issn.1001-1579.2015.06.011
    [18] ST/SG/AC.10/11/Rev.5/Amend.1 and Amend 2, Recommendations on the transport of dangerous goods—manual of tests and criteria[S].
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  1452
  • HTML全文浏览量:  234
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-25
  • 修回日期:  2021-01-18
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-03-05

目录

    /

    返回文章
    返回