留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能光源束流位置探测器支撑架结构优化设计

王安鑫 王梓豪 麻惠洲 李春华 聂小军 陈佳鑫 朱东辉 余洁冰 贺华艳 王广源 于永积 刘仁洪 张俊嵩 邱瑞阳 刘磊 康玲

王安鑫, 王梓豪, 麻惠洲, 等. 高能光源束流位置探测器支撑架结构优化设计[J]. 强激光与粒子束, 2021, 33: 044006. doi: 10.11884/HPLPB202133.200297
引用本文: 王安鑫, 王梓豪, 麻惠洲, 等. 高能光源束流位置探测器支撑架结构优化设计[J]. 强激光与粒子束, 2021, 33: 044006. doi: 10.11884/HPLPB202133.200297
Wang Anxin, Wang Zihao, Ma Huizhou, et al. Structural optimization design for beam position monitor support of High Energy Photon Source[J]. High Power Laser and Particle Beams, 2021, 33: 044006. doi: 10.11884/HPLPB202133.200297
Citation: Wang Anxin, Wang Zihao, Ma Huizhou, et al. Structural optimization design for beam position monitor support of High Energy Photon Source[J]. High Power Laser and Particle Beams, 2021, 33: 044006. doi: 10.11884/HPLPB202133.200297

高能光源束流位置探测器支撑架结构优化设计

doi: 10.11884/HPLPB202133.200297
基金项目: 国家自然科学基金项目(11805220)
详细信息
    作者简介:

    王安鑫(1983—),男,浙江绍兴人,高级工程师,硕士,机械设计及理论专业;wanganxin@ihep.ac.cn

  • 中图分类号: TL503

Structural optimization design for beam position monitor support of High Energy Photon Source

  • 摘要: 从热稳定性和振动稳定性两个角度出发,优化设计得到了超高稳定的刚性支撑架结构;通过ANSYS有限元模态分析,验证了结构的热膨胀变化量和特征频率;采用混凝土二次灌浆方法对支撑架进行地面固定和特征频率测试,结果表明,支撑架结构的特征频率达到61.9 Hz、振动幅值小于30 nm,均满足设计要求。最后采用动态刚度测试方法,得到混凝土二次灌浆层的主要刚度值,进一步验证支撑架结构优化结果的准确性。
  • 图  1  质量-刚度模型

    Figure  1.  Mass-stiffness model

    图  2  影响特征频率的参数曲线

    Figure  2.  The graph of relationship between parameters and characteristic frequency

    图  3  BPM主支撑体样机设计流程图

    Figure  3.  The design flow chart of BPM support prototype

    图  4  BPM支撑架样机模型

    Figure  4.  BPM support prototype model

    图  5  BPM支撑架垂向变化量随温度变化的曲线图

    Figure  5.  The curve graph of vertical variation of BPM support with temperature

    图  6  主支撑体与地面连接方式示意图

    Figure  6.  Schematic diagram of connection modes of BPM support

    图  7  主支撑体模态仿真结果

    Figure  7.  Modal simulation results of BPM support

    图  8  主支撑体模态测试

    Figure  8.  BPM support modal test

    图  9  模态测试结果

    Figure  9.  Modal test results of BPM support

    图  10  各测点频响曲线、相干曲线

    Figure  10.  Frequency response curve and coherence curve of each measuring point

    图  11  动态刚度测试

    Figure  11.  Dynamic stiffness test

    图  12  地脉动主支撑体响应测试

    Figure  12.  BPM support vibration response test

    图  13  主支撑体纵向振动响应曲线

    Figure  13.  BPM support longitudinal vibration response curves

    图  14  主支撑体横向振动响应曲线

    Figure  14.  BPM support transverse vibration response curves

    图  15  主支撑体特征频率与上板厚度的关系

    Figure  15.  The relation diagram of characteristic frequency and upper plate thickness

    图  16  主支撑体模态优化仿真结果

    Figure  16.  Modal simulation results of optimized BPM support

    表  1  材料参数

    Table  1.   Material parameters

    materialcoefficient of thermal expansion / ℃−1Poisson’s ratiomodulus of elasticity / GPadensity / (kg·m3)
    Invar 4J320.63×10−60.231458140
    SUS 3041.7×10−50.311937750
    concrete1.4×10−50.18302300
    下载: 导出CSV

    表  2  主支撑体不同固定方式的仿真结果

    Table  2.   Simulation results of different fixed modes of BPM support

    simulation natural frequency / Hz
    1st(longitudinal)2nd(lateral)
    ground bolt 38.7 107.4
    part grout 63.8 132.5
    full grout 66.7 135.9
    下载: 导出CSV

    表  3  主支撑体模态测试结果与仿真误差

    Table  3.   Modal test results and simulation error of BPM support

    fixation modeexperimental natural frequency / Hzsimulation error
    1st
    (longitudinal)
    2nd
    (lateral)
    1st
    (longitudinal)
    2nd
    (lateral)
    ground bolt 16.9 48.4 129% 122%
    part grout 55.5 104 15% 27%
    full grout 61.8 107 8% 27%
    下载: 导出CSV

    表  4  测试与仿真结果

    Table  4.   Test and simulation results

    stiffness / N·m·rad−1simulation natural frequency / Hzsimulation error
    1st(longitudinal)2nd(lateral)1st(longitudinal)2nd(lateral)1st(longitudinal)2nd(lateral)
    ground bolt 2.3×105 2.2×106 16.8 48.5 0.6% 0.2%
    part grout 9×106 2.1×107 55.5 103.5 0 0.5%
    full grout 3.4×107 2.5×107 61.9 107.1 0.2% 0.1%
    下载: 导出CSV

    表  5  主支撑体振动响应测试结果(RMS 1~100 Hz)

    Table  5.   BPM support vibration response test(RMS 1~100 Hz)

    measurementsimulation
    longitudinallaterallongitudinallateral
    ground/
    nm
    BPM
    support/nm
    ratioground/
    nm
    BPM
    support/nm
    ratioground/
    nm
    BPM
    support/nm
    ratioground/
    nm
    BPM
    support/nm
    ratio
    full grout 19.5 62.8 3.22 23.7 29.4 1.24 19.5 47.6 2.44 23.7 27.3 1.15
    part grout 22.6 82.49 3.65 23.3 29.6 1.27 22.6 59.4 2.63 23.3 27.3 1.17
    下载: 导出CSV
  • [1] Jiang Xiaoming, Wang Jiuqing, Qin Qing, et al. Chinese high energy photon source and the test facility[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2014, 10: 1075-1094.
    [2] Bialowons W, Amirikas R, Bertolini A, et al. Measurement of ground motion in various sites[C]//10th European Particle Accelerator Conference. 2006: 147-153.
    [3] Seryi A, Hendrickson L, Raimondi P, et al. Simulation studies of the NLC with improved ground motion models[C]//20th International Linac Conference. 2000: 1423-1429.
    [4] Amirikas R, Ehrlichmann H, Bialowons W, et al. Ground motion and comparison of various sites[R]. EUROTeV-023-1, 2005.
    [5] 王之琢, 曹建社, 王梓豪, 等. 高能光源BPMS独立支架系统设计[J]. 强激光与粒子束, 2019, 31:095101. (Wang Zhizhuo, Cao Jianshe, Wang Zhihao, et al. Independent support system for beam position monitors in HEPS[J]. High Power Laser and Particle Beams, 2019, 31: 095101 doi: 10.11884/HPLPB201931.190072
    [6] Liu Renhong, Qu Huamin, Kang Ling, et al. Modal analysis of AC quadrupole magnet system for CSNS/RCS[J]. Chinese Physics C, 2013, 37: 087002. doi: 10.1088/1674-1137/37/8/087002
    [7] 王梓豪, 李春华, 王之琢, 等. 基于模态匹配法的接触刚度[J]. 强激光与粒子束, 2019, 31:085101. (Wang Zihao, Li Chunhua, Wang Zhizhuo, et al. Contact stiffness measurement based on modal matching method[J]. High Power Laser and Particle Beams, 2019, 31: 085101 doi: 10.11884/HPLPB201931.190033
    [8] Jankovics D, Gohari H, Tayefeh M, et al. Developing topology optimization with additive manufacturing constraints in ANSYS[J]. IFAC Papers OnLine, 2018, 51(11): 1359-1364. doi: 10.1016/j.ifacol.2018.08.340
    [9] 李国会, 徐宏来, 向汝建, 等. 金属和玻璃胶合体热膨胀仿真及实验验证[J]. 强激光与粒子束, 2019, 31:121002. (Li Guohui, Xu Honglai, Xiang Rujian, et al. Simulation and experimental verification of thermal expansion of metal and glass cementing bodies[J]. High Power Laser and Particle Beams, 2019, 31: 121002 doi: 10.11884/HPLPB201931.190272
    [10] 王柯颖, 范宣华, 陈学前, 等. 基于PANDA平台的光机部件随机振动响应分析[J]. 强激光与粒子束, 2020, 32:011021. (Wang Keying, Fan Xuanhua, Chen Xueqian, et al. Random vibration response analysis of Shenguang laser facility component based on PANDA platform[J]. High Power Laser and Particle Beams, 2020, 32: 011021 doi: 10.11884/HPLPB202032.190269
    [11] 陈学前, 沈展鹏, 鄂林仲阳, 等. 基于薄层单元与弹簧单元的滚动直线导轨副动力学建模[J]. 强激光与粒子束, 2020, 32:072001. (Chen Xueqian, Shen Zhanpeng, Elin Zhongyang, et al. Dynamic modeling on a linear rolling guide based on thin layer element and spring element[J]. High Power Laser and Particle Beams, 2020, 32: 072001
  • 加载中
图(16) / 表(5)
计量
  • 文章访问数:  1139
  • HTML全文浏览量:  332
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-29
  • 修回日期:  2021-02-03
  • 网络出版日期:  2021-03-09
  • 刊出日期:  2021-05-02

目录

    /

    返回文章
    返回