留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氨水-六甲基二硅胺烷对SiO2化学膜环境稳定性的影响

陈西兵 蒋晓东 曹林洪 符亚军 严鸿维 晏良宏

陈西兵, 蒋晓东, 曹林洪, 等. 氨水-六甲基二硅胺烷对SiO2化学膜环境稳定性的影响[J]. 强激光与粒子束, 2021, 33: 041001. doi: 10.11884/HPLPB202133.200317
引用本文: 陈西兵, 蒋晓东, 曹林洪, 等. 氨水-六甲基二硅胺烷对SiO2化学膜环境稳定性的影响[J]. 强激光与粒子束, 2021, 33: 041001. doi: 10.11884/HPLPB202133.200317
Chen Xibing, Jiang Xiaodong, Cao Linhong, et al. Influence of ammonia-hexamethyldisilazane on environmental stability of SiO2 chemical film[J]. High Power Laser and Particle Beams, 2021, 33: 041001. doi: 10.11884/HPLPB202133.200317
Citation: Chen Xibing, Jiang Xiaodong, Cao Linhong, et al. Influence of ammonia-hexamethyldisilazane on environmental stability of SiO2 chemical film[J]. High Power Laser and Particle Beams, 2021, 33: 041001. doi: 10.11884/HPLPB202133.200317

氨水-六甲基二硅胺烷对SiO2化学膜环境稳定性的影响

doi: 10.11884/HPLPB202133.200317
详细信息
    作者简介:

    陈西兵(1992—),男,硕士研究生,主要从事光学薄膜方面的研究;chenxibinggg@163.com

    通讯作者:

    蒋晓东(1970—),男,研究员,主要从事激光与材料相互作用研究;jiangxdong@163.com

  • 中图分类号: O648.16

Influence of ammonia-hexamethyldisilazane on environmental stability of SiO2 chemical film

  • 摘要: 针对溶胶-凝胶技术制的单层SiO2化学膜,在室温下研究氨水-六甲基二硅胺烷(HMDS)气氛的量对膜层改性的影响,并在低真空条件下测试了其抗邻苯二甲酸二丁酯(DBP)污染性能。采用紫外-可见-近红外分光光度计(UV-Vis-NIR)、红外光谱仪和原子力显微镜分析了改性前后化学膜特性的演变。研究结果表明:经过DBP污染后,15~30 mL氨水-HMDS改性后化学膜的峰值透过率为99.8%,较改性前化学膜的峰值透过率提升了3.5%,此时化学膜表现出优异的抗污染特性。但是,随着氨水-HMDS处理量的进一步增多,化学膜的激光损伤阈值由改性前的的24.32 J/cm2降到19.36 J/cm2。本研究有助于优化改性参数,以提高化学膜的抗污染性能,在实际工程应用中具有重要的价值。
  • 图  1  氨水和HMDS改性化学膜的示意图

    Figure  1.  Schematic diagram of chemical membrane modified by ammonia and HMDS

    图  2  SiO2化学膜经氨水-HMDS气氛处理示意图

    Figure  2.  Schematic diagram of SiO2 films treated with of NH3-HMDS atmosphere

    图  3  化学膜经过氨水和HMDS改性前后的透射光谱

    Figure  3.  Transmittance spectra of the chemical films before and after modification with ammonia and HMDS

    图  4  化学膜经DBP污染测试后透射光谱

    Figure  4.  DBP contamination test of modified chemical film

    图  5  化学膜依次经过氨水和HMDS改性前后的原子力显微镜图像

    (a) untreated;(b) 5 mL;(c) 10 mL;(d) 15 mL;(e) 30 mL;(f) 50 mL。

    Figure  5.  Atomic force microscope (AFM) images of chemical films before and after NH3 and HMDS modification

    图  6  化学膜经过氨水-HMDS处理前后的红外光谱

    Figure  6.  Infrared spectra of the chemical films before and after modification with ammonia and HMDS

    表  1  化学膜依次经过氨水和HMDS改性前后厚度和折射率的变化

    Table  1.   Changes of thickness and refractive index of chemical films before and after NH3 and HMDS modification

    ammonia-HMDS/mLT/mmrelative shrinkage/%n
    before modificationafter modificationbefore modificationafter modification
    5/5 80.81 70.46 12.80 1.1911 1.2021
    10/10 80.61 69.37 13.94 1.1914 1.2023
    15/15 80.67 68.86 14.63 1.1913 1.2025
    30/30 80.34 68.31 14.97 1.1908 1.2029
    50/50 80.07 68.66 14.25 1.1902 1.2029
    下载: 导出CSV

    表  2  化学膜依次经过氨水和HMDS改性前后孔隙率的变化

    Table  2.   Changes of porosity of chemical films before and after NH3 and HMDS modification

    porosity samplePrelative change
    before modificationafter modification
    b 0.630 0.606 0.024
    c 0.629 0.605 0.024
    d 0.630 0.605 0.025
    e 0.631 0.606 0.025
    f 0.631 0.602 0.029
    下载: 导出CSV
  • [1] Zhang Xinxiang, Zhuang Mengyun, Miao Xia, et al. Environment-resistant fluoro-containing antireflective coatings for high-powered laser systems[J]. RSC Advances, 2014, 4(90): 48872-48875. doi: 10.1039/C4RA05449K
    [2] Pareek R, Kumbhare M N, Mukherjee C, et al. Effect of oil vapor contamination on the performance of porous silica sol-gel antireflection-coated optics in vacuum spatial filters of high-power neodymium glass laser[J]. Optical Engineering, 2008, 47: 023801. doi: 10.1117/1.2844551
    [3] Wang Xiaodong, Shen Jun. A review of contamination-resistant antireflective sol–gel coatings[J]. Journal of Sol-Gel Science and Technology, 2012, 61(1): 206-212. doi: 10.1007/s10971-011-2615-4
    [4] Lu Xiaoying, Wang Zhen, Yang Xiaoli, et al. Antifogging and antireflective silica film and its application on solar modules[J]. Surface and Coatings Technology, 2011, 206(6): 1490-1494. doi: 10.1016/j.surfcoat.2011.09.031
    [5] Gou Weiwei, Che Xiaogang, Yu Xuejie, et al. Facile fabrication of waterborne fabric coatings with multifunctional superhydrophobicity and thermal insulation[J]. Materials Letters, 2019, 250: 123-126. doi: 10.1016/j.matlet.2019.05.008
    [6] Joo W, Kim Y, Jang S, et al. Antireflection coating with enhanced anti-scratch property from nanoporous block copolymer template[J]. Thin Solid Films, 2011, 519(11): 3804-3808. doi: 10.1016/j.tsf.2011.01.107
    [7] Niu Yanyan, Yao Lanfang, Shen Jun, et al. Hydrophobic and optical properties of HMDS/silica hybrid antireflective coating prepared via sol-gel method[J]. Rare Metal Materials and Engineering, 2016, 45(s1): 258-261.
    [8] Huang Jichen, Liu Yuan, Cao Yuanyuan, et al. Durable silica antireflective coating prepared by combined treatment of ammonia and KH570 vapor[J]. Journal of Coatings Technology and Research, 2018, 16(2): 615-622.
    [9] Liu Yuan, Shen Jun, Zhou Bin, et al. Effect of hydrophobicity on the stability of sol–gel silica coatings in vacuum and their laser damage threshold[J]. Journal of Sol-Gel Science and Technology, 2013, 68(1): 81-87. doi: 10.1007/s10971-013-3137-z
    [10] 赵松楠, 晏良宏, 吕海兵, 等. 不同后处理方法对溶胶-凝胶SiO2膜层抗污染能力的影响[J]. 强激光与粒子束, 2009, 21(2):240-244. (Zhao Songnan, Yan Lianghong, Lü Haibing, et al. Effects of different treatments on contamination resistant capability of sol-gel SiO2 film[J]. High Power Laser and Particle Beams, 2009, 21(2): 240-244
    [11] Zhang Xinxiang, Zheng Feng, Ye Longqiang, et al. A one-pot sol–gel process to prepare a superhydrophobic and environment-resistant thin film from ORMOSIL nanoparticles[J]. RSC Advances, 2014, 4(19): 9838-9841. doi: 10.1039/c3ra47185c
    [12] Ai Ling, Zhang Jing, Li Xiao, et al. Universal low-temperature process for preparation of multifunctional high-performance antireflective mesoporous silica coatings on transparent polymeric substrates[J]. ACS Applied Materials & Interfaces, 2018, 10(5): 4993-4999.
    [13] Gun'Ko V M, Vedamuthu M S, Henderson G L, et al. Mechanism and kinetics of hexamethyldisilazane reaction with a fumed silica surface[J]. Journal of Colloid and Interface Science, 2000, 228(1): 157-170. doi: 10.1006/jcis.2000.6934
    [14] Xu Ligang, Geng Zhi, He Junhui, et al. Mechanically robust, thermally stable, broadband antireflective, and superhydrophobic thin films on glass substrates[J]. ACS Applied Materials & Interfaces, 2014, 6(12): 9029-9035.
    [15] 郭袁俊, 祖小涛, 蒋晓东, 等. 氨处理对溶胶凝胶增透膜激光损伤阈值的影响[J]. 光电工程, 2008, 35(7):126-129. (Guo Yuanjun, Zu Xiaotao, Jiang Xiaodong, et al. Effect of ammonia treatment on laser-induced damage threshold of sol-gel silica films[J]. Opto-Electronic Engineering, 2008, 35(7): 126-129 doi: 10.3969/j.issn.1003-501X.2008.07.025
    [16] 霍艳芳, 罗荣辉, 苏永钢. 水氨或/和六甲基二硅氮烷表面处理碱催化二氧化硅增透膜结果的对比研究[J]. 光子学报, 2013, 42(7):823-827. (Huo Yanfang, Luo Ronghui, Su Yonggang. Comparison of base-catalyzed silica antireflective coatings modified by different Surface treatments of Water-NH3 and/or hexamethyldisilazane vapors[J]. Acta Photonica Sinica, 2013, 42(7): 823-827 doi: 10.3788/gzxb20134207.0823
    [17] Belleville P F, Floch H G. Ammonia hardening of porous silica antireflective coatings[J]. Proceedings of the SPIE, 1994, 2288: 25-32. doi: 10.1117/12.188957
    [18] Thomas I M, Burnham A K, Ertel J R, et al. Method for reducing the effect of environmental contamination of sol-gel optical coatings[J]. Proceedings of the SPIE, 1999, 3492: 220-229. doi: 10.1117/12.354236
    [19] Yoshida K, Yabe T, Yoshida H, et al. Mechanism of damage formation in antireflection coatings[J]. Journal of Applied Physics, 1986, 60(5): 1545-1546.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  992
  • HTML全文浏览量:  302
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-21
  • 修回日期:  2021-03-18
  • 网络出版日期:  2021-04-10
  • 刊出日期:  2021-05-02

目录

    /

    返回文章
    返回