留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钡-钨阴极的组织特性与热电子发射性能

王子玉 尚吉花 杨新宇 张久兴

王子玉, 尚吉花, 杨新宇, 等. 钡-钨阴极的组织特性与热电子发射性能[J]. 强激光与粒子束, 2021, 33: 053001. doi: 10.11884/HPLPB202133.200335
引用本文: 王子玉, 尚吉花, 杨新宇, 等. 钡-钨阴极的组织特性与热电子发射性能[J]. 强激光与粒子束, 2021, 33: 053001. doi: 10.11884/HPLPB202133.200335
Wang Ziyu, Shang Jihua, Yang Xinyu, et al. Microstructure characterization and thermionic emission performance of barium-tungsten cathode[J]. High Power Laser and Particle Beams, 2021, 33: 053001. doi: 10.11884/HPLPB202133.200335
Citation: Wang Ziyu, Shang Jihua, Yang Xinyu, et al. Microstructure characterization and thermionic emission performance of barium-tungsten cathode[J]. High Power Laser and Particle Beams, 2021, 33: 053001. doi: 10.11884/HPLPB202133.200335

钡-钨阴极的组织特性与热电子发射性能

doi: 10.11884/HPLPB202133.200335
基金项目: 国家自然科学基金项目(51501051)
详细信息
    作者简介:

    王子玉(1995—),男,硕士研究生,从事钡钨阴极材料研究

    通讯作者:

    杨新宇(1984—),男,副教授,主要从事功能材料研究

  • 中图分类号: TF125

Microstructure characterization and thermionic emission performance of barium-tungsten cathode

  • 摘要: 利用正交试验探讨了放电等离子技术工艺参数(温度、压力、保温时间)对钡-钨(Ba-W)阴极中的W的孔隙度的影响规律,获得了孔隙率在23%~30%内变化时所需要的最佳工艺参数。在此基础上,制备出了具有不同孔隙度的球形W基体和普通不规则的W基体。研究表明:球形多孔W颗粒间堆积、排列有序,无闭孔,孔径分布集中而均匀,在26.3%的孔隙度下中值孔径为1.41 μm;机械性能方面,球形钨粉基体维氏硬度低于传统普通不规则钨多孔体。在脉宽10 μs、频率1000 Hz的条件下,阴极脉冲发射电流密度随着孔隙度的增大,先增大后减小。当基体孔隙度为26.3%时,阴极电流发射密度最大,在1050 ℃,偏离点发射电流密度可达24.62 A/cm2,零场发射电流密度为7.62 A/cm2,功函数为1.95 eV。
  • 图  1  原料粉末与粒度分布

    Figure  1.  Two kinds of raw material powder and their particle size distribution

    图  2  放电等离子烧结曲线

    Figure  2.  Spark plasma sintering curves

    图  3  多孔体基体微观组织形貌

    Figure  3.  Microstructures of the porous tungsten matrix

    图  4  基体孔径分布

    Figure  4.  Pore size distribution of matrix

    图  5  基体维氏硬度

    Figure  5.  Vickers hardness of matrix

    图  6  浸渍基体微观组织形貌与元素分析

    Figure  6.  Microstructure and component analysis of the impregnated matrix

    图  7  阴极热发射性能伏安特性与肖特基曲线

    Figure  7.  Volt-ampere characteristics and Schottky curve of cathode thermal emission performance

    表  1  参数因素水平

    Table  1.   Parametric factor level

    leveltemperature/℃holding time/minpressure/MPa
    1 1500 1 15
    2 1600 2 20
    3 1700 3 25
    下载: 导出CSV

    表  2  正交试验方案及结果

    Table  2.   Orthogonal experimental results

    numberABCerrorporosity/%
    1 1500 1 15 1 28.34
    2 1500 2 20 2 25.33
    3 1500 3 25 3 21.00
    4 1600 2 15 3 22.05
    5 1600 3 20 1 19.56
    6 1600 1 25 2 21.97
    7 1700 3 15 2 19.46
    8 1700 1 20 3 18.15
    9 1700 2 25 1 15.97
    下载: 导出CSV

    表  3  正交试验极差分析

    Table  3.   Orthogonal experiment range analysis

    ABCerror
    K74.6768.4669.8563.87
    63.5863.3563.0466.76
    53.5860.0258.9461.20
    R21.098.4410.915.56
    下载: 导出CSV

    表  4  正交试验方差分析,各因素偏方差和(SA)、自由度(f )与置信度(α)

    Table  4.   Orthogonal experiment variance analysis,sum of variance(SA),degree of freedom(f ) and confidence (α) of each factor

    sourceSAfFαdegree
    temperature(A)74.20214.390.1high
    holding Time(B)12.0522.340.25low
    pressure(C)20.2523.930.25middle
    error5.162
    SUM111.668
    下载: 导出CSV

    表  5  不同温度与孔隙度阴极偏离点电流密度

    Table  5.   Cathode deviation point values of different temperature and porosity

    temperature/℃Jdev with different spherical matrix cathode/(A·cm−2
    23.4%26.3%30.5%
    9008.4210.278.60
    100010.6614.7711.43
    105012.3724.6213.00
    110013.9533.0714.56
    下载: 导出CSV

    表  6  1050 ℃下各阴极J0Φ

    Table  6.   J0 and Φ values of three cathodes after activated at 1050 ℃

    activated temperature/℃J0/(A·cm−2 Φ/eV
    23.4%26.3%30.5%23.4%26.3%30.5%
    1050 3.79 7.62 3.10 2.03 1.95 2.05
    下载: 导出CSV
  • [1] Thomas R E, Gibson J W, Haas G A, et al. Thermionic sources for high-brightness electron beams[J]. IEEE Transactions on Electron Devices, 1990, 37(3): 850-861. doi: 10.1109/16.47802
    [2] 林祖伦, 王小菊. 阴极电子学[M]. 北京: 国防工业出版社, 2013.

    Lin Zulun, Wang Xiaoju. Cathode electronics[M]. Beijing: National Defense Industry Press, 2013
    [3] Kirkwood D M, Gross S J, Balk T J, et al. Frontiers in thermionic cathode research[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2061-2071. doi: 10.1109/TED.2018.2804484
    [4] 李鹤. 扩散式钡钨阴极性能研究[D]. 成都: 电子科技大学, 2015.

    Li He. Study on performance of impregnated dispenser cathode[D]. Chengdu: University of Electronic Science and Technology of China, 2015
    [5] Wang Xiaoxia, Chen Xiaoqian, Zhang Shuai, et al. The work function of the ammonium perrhenate impregnated W matrix Ba-W cathode[C]//Proceedings of the 2019 International Vacuum Electronics Conference (IVEC). 2019.
    [6] Li Jinglin, Zhao Weihua, Wei Jianjun, et al. Effect of BaO on the phase composition and properties of aluminates for Ba-W cathodes[J]. Ceramics International, 2019, 45(4): 4308-4315. doi: 10.1016/j.ceramint.2018.11.105
    [7] Shang Jihua, Yang Xinyu, Wang Ziyu, et al. Influence of the surface tungsten distribution on the emission properties of barium tungsten cathode[J]. IEEE Transactions on Electron Devices, 2020, 67(6): 2580-2584. doi: 10.1109/TED.2020.2986034
    [8] Li Jinglin, Wei Jianjun, Feng Yongbao, et al. Effect of CaO on phase composition and properties of aluminates for barium tungsten cathode[J]. Materials, 2018, 11(8): 1380. doi: 10.3390/ma11081380
    [9] Gӓrtner G, Geittner P, Lydtin H, et al. Emission properties of top-layer scandate cathodes prepared by LAD[J]. Applied Surface Science, 1997, 111: 11-17. doi: 10.1016/S0169-4332(96)00698-8
    [10] Hu Mingwei, Wang Xiaoxia, Qi Shikai. Preparation, performance, and work function model of impregnated tungstate cathodes[J]. IEEE Transactions on Electron Devices, 2019, 66(8): 3592-3598. doi: 10.1109/TED.2019.2922707
    [11] Wu Zhaohao. The relations of impregnated cathode properties to the tungsten matrix structure[J]. Journal of Electronics (China), 1987, 4(4): 273-281. doi: 10.1007/BF02779035
    [12] Melnikova I P, Vorozheikin V G, Usanov D A. Correlation of emission capability and longevity of dispenser cathodes with characteristics of tungsten powders[J]. Applied Surface Science, 2003, 215(1/4): 59-64.
    [13] Singh A K, Ravi M, Bisht M S, et al. Study and development of active sintered controlled porosity dispenser cathode[J]. IEEE Transactions on Electron Devices, 2015, 62(11): 3837-3843. doi: 10.1109/TED.2015.2478970
    [14] 胡可, 邱振涛, 杨新宇, 等. 等离子体球化处理和放电等离子烧结制备的钡钨阴极多孔钨基体[J]. 稀有金属材料与工程, 2019, 48(2):608-613. (Hu Ke, Qiu Zhentao, Yang Xinyu, et al. Porous tungsten matrix for Ba-W cathode prepared by plasma spheroidization process and spark plasma sintering[J]. Rare Metal Materials and Engineering, 2019, 48(2): 608-613
    [15] Bao Jixiu, Wan Baofei. The tungsten powder study of the dispenser cathode[J]. Applied Surface Science, 2006, 252(16): 5873-5876. doi: 10.1016/j.apsusc.2005.08.012
    [16] Skorokhod V V, Get’Man O I, Zuev A E, et al. Correlation between the particle size, pore size, and porous structure of sintered tungsten[J]. Soviet Powder Metallurgy and Metal Ceramics, 1988, 27(12): 941-947.
    [17] Deng Shenghua, Yuan Tiechui, Li Ruidi, et al. Spark plasma sintering of pure tungsten powder: densification kinetics and grain growth[J]. Powder Technology, 2017, 310: 264-271. doi: 10.1016/j.powtec.2017.01.050
    [18] Qin Junhua, Chen Qing, Yang Chunyan, et al. Research process on property and application of metal porous materials[J]. Journal of Alloys and Compounds, 2016, 654: 39-44. doi: 10.1016/j.jallcom.2015.09.148
    [19] Dudina D V, Bokhonov B B, Olevsky E A. Fabrication of porous materials by spark plasma sintering: a review[J]. Materials, 2019, 12(3): 541-569. doi: 10.3390/ma12030541
    [20] Li Baoqiang, Sun Zhiqiang, Jin Huacheng, et al. Fabrication of homogeneous tungsten porous matrix using spherical tungsten powders prepared by thermal plasma spheroidization process[J]. International Journal of Refractory Metals and Hard Materials, 2016, 59: 105-113. doi: 10.1016/j.ijrmhm.2016.06.002
    [21] 刘瑞江, 张业旺, 闻崇炜, 等. 正交试验设计和分析方法研究[J]. 实验技术与管理, 2010, 27(9):52-55. (Liu Ruijiang, Zhang Yewang, Wen Chongwei, et al. Study on the design and analysis methods of orthogonal experiment[J]. Experimental Technology and Management, 2010, 27(9): 52-55 doi: 10.3969/j.issn.1002-4956.2010.09.016
    [22] 何学良. 扩散式钡钨阴极用钨基体材料的研究[D]. 北京: 北京有色金属研究总院, 2018.

    He Xueliang. Study on tungsten matrix material for diffusion barium tungsten cathode[D]. Beijing: General Research Institute for Nonferrous Metals, 2018
    [23] Yin Shengyin, Zhang Zhaochuan, Peng Zhen, et al. A new impregnated dispenser cathode[J]. IEEE Transactions on Electron Devices, 2013, 60(12): 4258-4262. doi: 10.1109/TED.2013.2287729
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  995
  • HTML全文浏览量:  644
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-14
  • 修回日期:  2021-03-21
  • 网络出版日期:  2021-04-10
  • 刊出日期:  2021-05-20

目录

    /

    返回文章
    返回