留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

10 MA多支路汇流装置上钽的强度实验研究

张朝辉 王贵林 章征伟 郭帆 计策 傅贞 李勇

张朝辉, 王贵林, 章征伟, 等. 10 MA多支路汇流装置上钽的强度实验研究[J]. 强激光与粒子束, 2021, 33: 045001. doi: 10.11884/HPLPB202133.210069
引用本文: 张朝辉, 王贵林, 章征伟, 等. 10 MA多支路汇流装置上钽的强度实验研究[J]. 强激光与粒子束, 2021, 33: 045001. doi: 10.11884/HPLPB202133.210069
Zhang Zhaohui, Wang Guilin, Zhang Zhengwei, et al. Tantalum strength experiments on 10 MA facility[J]. High Power Laser and Particle Beams, 2021, 33: 045001. doi: 10.11884/HPLPB202133.210069
Citation: Zhang Zhaohui, Wang Guilin, Zhang Zhengwei, et al. Tantalum strength experiments on 10 MA facility[J]. High Power Laser and Particle Beams, 2021, 33: 045001. doi: 10.11884/HPLPB202133.210069

10 MA多支路汇流装置上钽的强度实验研究

doi: 10.11884/HPLPB202133.210069
基金项目: 中国工程物理研究院科研项目
详细信息
    作者简介:

    张朝辉(1979—),男,博士研究生,副研究员,从事材料动力学特性研究;zhangzh108@caep.cn

  • 中图分类号: O521.3

Tantalum strength experiments on 10 MA facility

  • 摘要:

    磁驱动准等熵加载技术通过电流产生的磁压力加载材料,加载路径由负载电流波形和负载结构决定。作为应变率介于静高压加载和冲击加载之间的新型实验技术,熵增小、温升低。10 MA装置是典型的多支路汇流装置,包括24个电流支路,可在较大范围内控制负载电流波形,实现mm厚、cm直径样品在不同应变率下的准等熵加载。基于10 MA装置,通过调节负载电流波形实现样品加载路径控制,在一定压力-应变率范围,开展金属钽的强度实验研究,获取了不同厚度金属钽样品的加-卸载波剖面速度历史,分析获得了钽在系列峰值压力下的强度数据,比较了多个加载平台不同加载路径下的强度数据,实验结果与美国圣地亚国家实验室的磁驱动准等熵结果接近(平均应变率都约为105 s−1),明显高于冲击加载的流动强度,低于准静态加载获取的流动强度,与应变率增高强度会有所下降的理论预测一致。基于多支路汇流装置,未来将可开展更为丰富的材料动力学特性实验研究。

  • 图  1  磁驱动材料动态实验数据处理方法

    Figure  1.  Data processing method of magnetically-driven material dynamic properties experiment

    图  2  典型负载结构、电磁场模拟和诊断结果

    Figure  2.  Typical load configuration/electromagnetic field simulation/measurement result

    图  3  磁驱动加载中材料界面反射波对加载历史的影响

    Figure  3.  Influence of reverberation wave acting on the loading history in magnetically-driven experiments

    图  4  电流波形调节方案设计方法

    Figure  4.  Design method of current shape adjusting

    图  5  10 MA装置各支路结构示意图

    Figure  5.  Schematic diagram of one of 24 branch structure of 10 MA facility

    图  6  Shot299实验测量平滑的波剖面速度历史及数据处理得到的加载-卸载声速历史

    Figure  6.  Measured velocity history in shot 299 and loading-unloading sound velocity history from dada processing

    图  7  金属Ta在28.7/81/119 GPa系列峰值压力下的流动强度特性

    Figure  7.  Flow-strength properties of Ta in different peak pressure

    表  1  几种金属材料特性数据[22]

    Table  1.   Several metal properties data

    materialsdensity/(g·cm−3initial sound velocity/(cm·μs−1resistivity Ω/(μΩ∙cm)explosive action/(MA2·cm−4
    aluminum 2.70 0.525 2.82 658
    copper 8.95 0.396 1.77 1730
    silver 10.50 0.324 1.59 1120
    gold 19.30 0.307 2.44 830
    tungsten 19.30 0.404 5.60 750
    molybdenum 10.20 0.516 5.70 740
    uranium 18.70 0.251 28.00 350
    下载: 导出CSV

    表  2  金属Ta准等熵加载强度实验材料、厚度和获取的强度特性

    Table  2.   Parameters of quasi-isentropic compression experiment of Ta and strength properties obtained

    experiment
    number
    thickness
    /μm
    peak velocity
    uM/(km·s−1)
    peak pressure
    /GPa
    uM(IEL)
    /(km·s−1)
    up(IEL)
    /(km·s−1)
    σ(REL)
    /GPa
    Y(IEL)
    /GPa
    Y(flow)
    /GPa
    strain rate
    /(105 s)
    shot297a919/10110.6828.70.0700.04582.611.271.854.1
    shot299b582/9891.63810.0790.05172.951.443.166.7
    shot397b544/10992.191190.0750.04912.801.373.757.8
    note: a—annealing Ta; b—un-annealing Ta.
    下载: 导出CSV
  • [1] Lemke R W, Knudson M D, Davis J P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator[J]. International Journal of Impact Engineering, 2011, 38(6): 480-485. doi: 10.1016/j.ijimpeng.2010.10.019
    [2] 莫建军, 王桂吉, 孙承纬, 等. 金属钽的准等熵压缩特性试验研究[C]//第十二届全国实验力学学术会议论文集. 2009.

    Mo Jianjun, Wang Guiji, Sun Chengwei, et al. Experimental study on quasi-isentropic compression characteristics of tantalum[C]//Proceedings of the 12th National Conference on Experimental Mechanics. 2009
    [3] 张红平, 王桂吉, 李牧, 等. 准等熵压缩下金属钽的屈服强度分析[J]. 高压物理学报, 2011, 25(4):321-326. (Zhang Hongping, Wang Guiji, Li Mu, et al. Yield strength analysis of tantalum in quasi-isentropic compression[J]. Chinese Journal of High Pressure Physics, 2011, 25(4): 321-326
    [4] Davis J P, Knudson M D. Multi-megabar measurement of the principal quasi-isentrope for tantalum[C]//Proceedings of the American Physical Society Topical Group on Shock Compression of Condensed Matter. 2009: 673-676.
    [5] Eggert J, Bastea M, Reisman D B, et al. Ramp wave stress-density measurements of Ta and W[J]. AIP Conference Proceedings, 2007, 955(1): 1177-1180.
    [6] Asay J R, Ao T, Vogler T J, et al. Yield strength of tantalum for Shockless compression to 18 GPa[J]. Journal of Applied Physics, 2009, 106: 073515. doi: 10.1063/1.3226882
    [7] Asay J R, Vogler T J, Ao T, et al. Dynamic yielding of single crystal Ta at strain rates of~5×105/s[J]. Journal of Applied Physics, 2011, 109: 073507. doi: 10.1063/1.3562178
    [8] Vogler T J. On measuring the strength of metals at ultrahigh strain rates[J]. Journal of Applied Physics, 2009, 106: 053530. doi: 10.1063/1.3204777
    [9] Davis J P, Deeney C, Knudson M D, et al. Magnetically driven isentropic compression to multimegabar pressures using shaped current pulses on the Z accelerator[J]. Physics of Plasmas, 2005, 12: 056310. doi: 10.1063/1.1871954
    [10] Alexander C S, Knudson M D, Hall C A. High accuracy Hugoniot measurements at multi-megabar pressure utilizing the Sandia Z accelerator[J]. Journal of Physics: Conference Series, 2010, 215: 012150. doi: 10.1088/1742-6596/215/1/012150
    [11] Trainor R J, Parsons W M, Ballard E O, et al. Overview of the Atlas project[C]//Digest of Technical Papers. 11th IEEE International Pulsed Power Conference (Cat. No. 97CH36127). Baltimore, MD, USA: IEEE, 1997.
    [12] 王贵林, 李军, 张朝辉, 等. “阳”加速器磁驱动平面飞片实验和速度计算校验[J]. 强激光与粒子束, 2014, 26:015101. (Wang Guilin, Li Jun, Zhang Zhaohui, et al. Experiments and velocity validation of magnetically driven flyer plates on “Yang” accelerator[J]. High Power Laser and Particle Beams, 2014, 26: 015101 doi: 10.3788/HPLPB20142601.15101
    [13] 王勐, 关永超, 宋盛义, 等. PTS装置分层真空轴向绝缘堆设计[J]. 强激光与粒子束, 2010, 22(4):777-781. (Wang Meng, Guan Yongchao, Song Shengyi, et al. Design of PTS vacuum insulator stack[J]. High Power Laser and Particle Beams, 2010, 22(4): 777-781 doi: 10.3788/HPLPB20102204.0777
    [14] 王贵林. 磁驱动平面加载实验技术及其在高压物态方程研究中的应用[D]. 合肥: 中国科学技术大学, 2014: 6.

    Wang Guilin. Magnetic loading techniques and its applications in high-pressure EOS[D]. Hefei: University of Science and Technology of China, 2014: 6
    [15] 王贵林, 郭帅, 沈兆武, 等. 基于聚龙一号装置的超高速飞片发射实验研究进展[J]. 物理学报, 2014, 63:196201. (Wang Guilin, Guo Shuai, Shen Zhaowu, et al. Recent advances in hyper-velocity flyer launch experiments on PTS[J]. Acta Physica Sinica, 2014, 63: 196201 doi: 10.7498/aps.63.196201
    [16] Hall C A, Asay J R, Knudson M D, et al. Experimental configuration for isentropic compression of solids using pulsed magnetic loading[J]. Review of Scientific Instruments, 2001, 72(9): 3587-3595. doi: 10.1063/1.1394178
    [17] 马云, 胡绍楼, 汪小松, 等. 样品-窗口界面运动速度的VISAR测试技术[J]. 高压物理学报, 2003, 17(4):290-294. (Ma Yun, Hu Shaolou, Wang Xiaosong, et al. VISAR measurement on interface velocity between shocked specimen and window[J]. Chinese Journal of High Pressure Physics, 2003, 17(4): 290-294 doi: 10.11858/gywlxb.2003.04.008
    [18] Weng Jidong, Wang Xiang, Tao Tianjiong, et al. Optic-microwave mixing velocimeter for superhigh velocity measurement[J]. The Review of Scientific Instruments, 2011, 82: 123114. doi: 10.1063/1.3670403
    [19] Dolan D H. Accuracy and precision in photonic Doppler velocimetry[J]. The Review of Scientific Instruments, 2010, 81: 053905. doi: 10.1063/1.3429257
    [20] 章征伟, 王贵林, 张绍龙, 等. 电作用量在磁驱动固体套筒内爆设计分析中的应用[J]. 物理学报, 2020, 69:050701. (Zhang Zhengwei, Wang Guilin, Zhang Shaolong, et al. Application of electrical action to design and analysis of magnetically driven solid liner implosion[J]. Acta Physica Sinica, 2020, 69: 050701 doi: 10.7498/aps.69.20191690
    [21] 王礼立. 应力波基础[M]. 2版. 北京: 国防工业出版社, 2005: 45-50.

    Wang Lili. Foundation of stress waves[J]. 2nd ed. Beijing: National Defence Industry Press, 2005: 45-50
    [22] Tucker T J, Toth R P. Sandia National Laboratory Report SAND-75-0041 (New Mexico: Sandia National Laboratory)
    [23] 王刚华, 王桂吉, 阚明先, 等. CQ-4装置电磁驱动能力分析[J]. 应用力学学报, 2013, 30(6):932-935. (Wang Ganghua, Wang Guiji, Kan Mingxian, et al. Analysis of magnetic drive capability for CQ-4 device[J]. Chinese Journal of Applied Mechanics, 2013, 30(6): 932-935 doi: 10.11776/cjam.30.06.A002
    [24] 郭帆, 王贵林, 邹文康, 等. 聚龙一号装置磁驱动加载实验的全电路模拟[J]. 强激光与粒子束, 2018, 30:125001. (Guo Fan, Wang Guilin, Zou Wenkang, et al. Full circuit calculation of magnetically driven experiment on PTS facility[J]. High Power Laser and Particle Beams, 2018, 30: 125001 doi: 10.11884/HPLPB201830.180239
    [25] Brown J L, Alexander C S, Asay J R, et al. Flow strength of tantalum under ramp compression to 250 GPa[J]. Journal of Applied Physics, 2014, 115: 043530. doi: 10.1063/1.4863463
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  839
  • HTML全文浏览量:  223
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-08
  • 修回日期:  2021-03-28
  • 网络出版日期:  2021-04-12
  • 刊出日期:  2021-05-02

目录

    /

    返回文章
    返回