留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性增益介质中强激光热像的演化规律

吕奇霖 马再如 王方 胡东霞 刘红婕 田野 艾亦章

吕奇霖, 马再如, 王方, 等. 非线性增益介质中强激光热像的演化规律[J]. 强激光与粒子束, 2021, 33: 111015. doi: 10.11884/HPLPB202133.210156
引用本文: 吕奇霖, 马再如, 王方, 等. 非线性增益介质中强激光热像的演化规律[J]. 强激光与粒子束, 2021, 33: 111015. doi: 10.11884/HPLPB202133.210156
Lü Qilin, Ma Zairu, Wang Fang, et al. Approximate analytical expression for intensity of hot image of intensity laser beam in media with gain saturation region[J]. High Power Laser and Particle Beams, 2021, 33: 111015. doi: 10.11884/HPLPB202133.210156
Citation: Lü Qilin, Ma Zairu, Wang Fang, et al. Approximate analytical expression for intensity of hot image of intensity laser beam in media with gain saturation region[J]. High Power Laser and Particle Beams, 2021, 33: 111015. doi: 10.11884/HPLPB202133.210156

非线性增益介质中强激光热像的演化规律

doi: 10.11884/HPLPB202133.210156
基金项目: 国家自然科学基金项目(11904338)
详细信息
    作者简介:

    吕奇霖,lqlrehte@163.com

    通讯作者:

    马再如,simazairu@sina.com.cn

  • 中图分类号: O437.5

Approximate analytical expression for intensity of hot image of intensity laser beam in media with gain saturation region

  • 摘要: 高功率激光系统中的热像效应可能导致光束的峰值功率剧烈增加,增益非线性介质会使这种光强增幅更为强烈。基于菲涅尔-基尔霍夫衍射理论和非线性近轴波动方程,对强激光在增益克尔介质工作在饱和区时的热像产生过程进行理论分析,将光束传输方程中增益饱和部分进行麦克劳林展开,取其近似,经过推导得出了介质薄近似时热像强度解析式和热像位置。通过数值模拟对解析结论预测的热像强度和位置进行验证。仿真结果表明,热像的位置在衍射物相对于介质对称处,热像强度解析结果与模拟结果相符,在薄介质时,解析解与模拟结果拟合较好。热像强度随非线性介质内非线性效应增强而停止增加,此外,讨论了热像强度随调制类型的变化。
  • 图  1  热像形成示意图

    Figure  1.  Schematic diagram of hot image formation

    图  2  光路的峰值光强演化图和热像的光强分布图(输入光输强度:$ 28{\text{ GW/c}}{{\text{m}}^2} $$ \tau = 0 $$ \theta = {\text{π}} $,增益饱和光强$ 100{\text{ GW/c}}{{\text{m}}^2} $

    Figure  2.  Peak light intensity evolution diagram of the light path and the light intensity distribution diagram of the hot image (incident light intensity:$ 28{\text{ GW/c}}{{\text{m}}^2} $$ \tau = 0 $$ \theta = {\text{π}} $,saturation light intensity is $ 10\;{\text{GW/c}}{{\text{m}}^2} $)

    图  3  热像位置随物距变化的曲线

    Figure  3.  Curve of hot image position with object distance

    图  4  热像相对强度随B积分变化曲线

    Figure  4.  Curve of relative intensity of hot image with B integral

    图  5  热像的峰值强度随克尔介质厚度的变化(相位调制$ \theta {\text{ = }}{\text{π}} $$ \tau {\text{ = }}1 $;入射光强$ {\text{20 GW/c}}{{\text{m}}^2} $,增益饱和光强$ 100{\text{ GW/c}}{{\text{m}}^2} $

    Figure  5.  Variation of hot image intensity with the thickness of the amplifying Kerr medium slab (phase obscurations $ \theta {\text{ = }}{\text{π}}$, $ \tau {\text{ = }}1 $; Amplitude obscurations $ \tau {\text{ = 0}} $; incident light intensity $ {\text{20 GW/c}}{{\text{m}}^2} $, saturation light intensity $ 100{\text{ GW/c}}{{\text{m}}^2} $)

    图  6  热像的峰值强度随输入光强的变化

    Figure  6.  Variation of hot image intensity with the intensity of saturation light

    图  7  入射光强$ {\text{20 GW/c}}{{\text{m}}^2} $时,介质后方光束峰值强度(相位调制$ \theta {\text{ = }}{\text{π}} $$ \tau {\text{ = }}1 $,增益饱和光强$ 100{\text{ GW/c}}{{\text{m}}^2} $

    Figure  7.  Incident light intensity $ {\text{20 GW/c}}{{\text{m}}^2} $, peak-to-mean intensity of the light after the Kerr medium slab (phase obscurations $ \theta {\text{ = }}{\text{π}} $, $ \tau {\text{ = }}1 $, saturation light intensity $ 100\;{\text{ GW/c}}{{\text{m}}^2} $)

    图  8  对应图6(b)的热像强度分布

    Figure  8.  Peak-to-mean intensity distribution corresponding to Fig.6(b)

  • [1] Hunt J T, Manes K R, Renard P A. Hot images from obscurations[J]. Applied Optics, 1993, 32(30): 5973-5982. doi: 10.1364/AO.32.005973
    [2] Williams W, Renard P A, Manes K R, et al. Modeling of self-focusing experiments by beam propagation codes[R]. UCRL-LR-105821-96-1, 1996: 7-14.
    [3] Widmayer C C, Milam D, Deszoeke S P. Nonlinear formation of holographic images of obscurations in laser beams[J]. Applied Optics, 1997, 36(36): 9342-9347. doi: 10.1364/AO.36.009342
    [4] Widmayer C C, Nickels M R, Milam D. Nonlinear holographic imaging of phase errors[J]. Applied Optics, 1998, 37(21): 4801-4805. doi: 10.1364/AO.37.004801
    [5] Xie Liangping, Jing Feng, Zhao Jianlin, et al. Nonlinear hot-image formation of an intense laser beam in media with gain and loss[J]. Optics Communications, 2004, 236(4/6): 343-348.
    [6] 谢良平, 赵建林, 粟敬钦, 等. 位相调制产生“热像”效应理论研究[J]. 物理学报, 2004, 53(7):2175-2179. (Xie Liangping, Zhao Jianlin, Su Jingqin, et al. Theoretical analysis of hot image effect from phase scatter[J]. Acta Physica Sinica, 2004, 53(7): 2175-2179 doi: 10.3321/j.issn:1000-3290.2004.07.029
    [7] 谢良平, 粟敬钦, 景峰, 等. 高功率激光系统中全息“热像”效应[J]. 强激光与粒子束, 2004, 16(5):571-574. (Xie Liangping, Su Jingqin, Jing Feng, et al. Nonlinear hot holographic image in high power solid-state laser systems[J]. High Power Laser and Particle Beams, 2004, 16(5): 571-574
    [8] Xie Liangping, Zhao Jianlin, Jing Feng. Second-order hot image from a scatterer in high-power laser systems[J]. Applied Optics, 2005, 44(13): 2553-2557. doi: 10.1364/AO.44.002553
    [9] 王友文, 胡勇华, 文双春, 等. 高功率激光系统中非线性热像与模糊斑大小的关系[J]. 光学学报, 2007, 27(10):1836-1841. (Wang Youwen, Hu Yonghua, Wen Shuangchun, et al. Relationship between nonlinear hot image and dimensions of obscurations in high-power lasers[J]. Acta Optica Sinica, 2007, 27(10): 1836-1841 doi: 10.3321/j.issn:0253-2239.2007.10.022
    [10] 王友文, 文双春, 胡勇华, 等. 强激光非线性热像与克尔介质厚度的关系[J]. 中国激光, 2008, 35(5):698-705. (Wang Youwen, Wen Shuangchun, Hu Yonghua, et al. Dependence of nonlinear hot image of intense laser beam on the thickness of Kerr medium[J]. Chinese Journal of Lasers, 2008, 35(5): 698-705 doi: 10.3321/j.issn:0258-7025.2008.05.013
    [11] Wang Youwen, Ling Xiaohui, Dai Zhiping, et al. Formation of hot image in an intense laser beam through a saturable nonlinear medium slab[C]//Proceedings of SPIE 10016, High-power Lasers and Applications VIII. 2016: 100161J.
    [12] Hu Yonghua, Huang Jie, Peng Xue, et al. Nonlinear imaging properties under the coeffect of two wirelike opaque scatterers[J]. Journal of the Optical Society of America B, 2013, 30(2): 349-354. doi: 10.1364/JOSAB.30.000349
    [13] Hu Yonghua, Huang Jie, Peng Xue. Nonlinear formation of hot image and double intense image for gain-typed wirelike scatterers[J]. Optics & Laser Technology, 2014, 56: 131-136.
    [14] Peng Tao, Zhao Jianlin, Xie Liangping, et al. Simulation analysis of the restraining effect of a spatial filter on a hot image[J]. Applied Optics, 2007, 46(16): 3205-3209. doi: 10.1364/AO.46.003205
    [15] 彭涛, 赵建林, 谢良平, 等. 厚介质情况下激光“热像”的演化规律分析[J]. 物理学报, 2007, 56(6):3255-3260. (Peng Tao, Zhao Jianlin, Xie Liangping, et al. Analysis of the evolvement of hot-image in case of thick nonlinear medium[J]. Acta Physica Sinica, 2007, 56(6): 3255-3260 doi: 10.3321/j.issn:1000-3290.2007.06.037
    [16] Peng Tao, Zhao Jianlin, Li Dong, et al. Simulation analysis of evolution of hot-images induced by coplanar multi-scatterers[J]. Chinese Physics B, 2009, 18(5): 1884-1890. doi: 10.1088/1674-1056/18/5/028
    [17] Chen Yifan, Beckwitt K, Wise F W, et al. Measurement of fifth- and seventh-order nonlinearities of glasses[J]. Journal of the Optical Society of America B, 2006, 23(2): 347-352. doi: 10.1364/JOSAB.23.000347
  • 加载中
图(8)
计量
  • 文章访问数:  668
  • HTML全文浏览量:  263
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-20
  • 修回日期:  2021-10-26
  • 网络出版日期:  2021-11-03
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回