留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TRC路径特征及其对时间反演信噪比的影响

陆希成 邱扬 江凌 汪海波 田锦 郭昕伟

陆希成, 邱扬, 江凌, 等. TRC路径特征及其对时间反演信噪比的影响[J]. 强激光与粒子束, 2021, 33: 123006. doi: 10.11884/HPLPB202133.210171
引用本文: 陆希成, 邱扬, 江凌, 等. TRC路径特征及其对时间反演信噪比的影响[J]. 强激光与粒子束, 2021, 33: 123006. doi: 10.11884/HPLPB202133.210171
Lu Xicheng, Qiu Yang, Jiang Ling, et al. Time reversal cavity path and its influence on signal to noise ratio[J]. High Power Laser and Particle Beams, 2021, 33: 123006. doi: 10.11884/HPLPB202133.210171
Citation: Lu Xicheng, Qiu Yang, Jiang Ling, et al. Time reversal cavity path and its influence on signal to noise ratio[J]. High Power Laser and Particle Beams, 2021, 33: 123006. doi: 10.11884/HPLPB202133.210171

TRC路径特征及其对时间反演信噪比的影响

doi: 10.11884/HPLPB202133.210171
详细信息
    作者简介:

    陆希成,luxcheng2012@163.com

  • 中图分类号: O441.4 TN011

Time reversal cavity path and its influence on signal to noise ratio

  • 摘要: 时间反演具有时空聚焦特征,在许多方面有着潜在的应用。其中,基于时间反演腔的系统是一种主要的反演系统,可用于脉冲压缩、波束成形、微扰探测等。时间反演腔通常是一个电大的微波混沌腔,内部电磁波的传播具有明显的多径特征,即时间色散特征。因此,在时间反演过程中,反演腔可对反演信号进行相位补偿,重构出初始信号,从而在初始位置形成脉冲的时间压缩和空间聚焦。为了拓展时间反演腔的实际应用,本文基于多径信道模型研究腔体参数对反演性能的影响,重点分析路径的衰减特征、串扰特征和叠加特征对反演信噪比的影响,并总结给出影响反演信噪比的主要参数以及基本规律。
  • 图  1  典型时间反演腔和其时间反演结果

    Figure  1.  Typical time reversal cavity (TRC) system and its time reversal results

    图  2  典型的路径特征

    Figure  2.  Typical path properties

    图  3  初始信号、反演信号、重构信号的频谱分布特征

    Figure  3.  Spectrum distribution of initial,reversal and reconstructed signal

    图  4  腔体的归一化阻抗特征

    Figure  4.  The normalized impedance of cavity

    图  1  全光纤保偏超窄线宽光纤激光器结构示意图

    图  2  放大器的测试结果

    表  1  腔体损耗的路径统计特征与信噪比的关系

    Table  1.   Relationship between cavity loss and signal to noise ratio

    No. conductivity/(S·m−1 mean standard deviation mainlobe SNR/dB
    1 0.0056 0.0085 0.45 18.3
    2 3.56e+7 0.0044 0.0072 0.26 15.9
    3 1e+6 0.0037 0.0065 0.23 15.6
    4 1e+5 0.0017 0.0039 0.11 14.9
    下载: 导出CSV

    表  2  不同结构腔体路径统计特征与信噪比的关系

    Table  2.   Relationship between cavity structure and signal to noise ratio

    No. structure mean standard deviation mainlobe SNR/dB
    1 0.0049 0.0069 0.43 18.4
    2 0.0034 0.0055 0.34 17.6
    3 0.0016 0.0017 0.174 12.8
    4 0.0012 0.0012 0.16 14.1
    下载: 导出CSV

    表  3  腔体尺寸与信噪比的关系

    Table  3.   Relationship between cavity size and signal to noise ratio

    No. size/(mm×mm) decay time mean standard deviation SNR/dB
    1 400×300 1.14 0.0069 0.0136 14.0
    2 600×400 1.60 0.0056 0.0085 18.3
    3 800×600 2.28 0.0044 0.0058 18.9
    下载: 导出CSV
  • [1] Rachidi M, Rubinstein F, Paolone M. Electromagnetic time reversal: application to electromagnetic compatibility and power systems[M]. Hoboken: John Wiley & Sons, Ltd. , 2017.
    [2] Fink M, Prada C, Wu F, et al. Self focusing in inhomogeneous media with time reversal acoustic mirrors[C]//Proceedings. , IEEE Ultrasonics Symposium. 1989: 681-686.
    [3] 朱江, 王雁, 杨甜. 无线多径信道中基于时间反演的物理层安全传输机制[J]. 物理学报, 2018, 67:050201. (Zhu Jiang, Wang Yan, Yang Tian. Secure transmission mechanism based on time reversal over wireless multipath channels[J]. Acta Physica Sinica, 2018, 67: 050201 doi: 10.7498/aps.67.20172134
    [4] De Nardis L, Fiorina J, Panaitopol D, et al. Combining UWB with Time Reversal for improved communication and positioning[J]. Telecommunication Systems, 2013, 52(2): 1145-1158. doi: 10.1007/s11235-011-9630-1
    [5] 臧锐. 时间反演技术在电磁通信领域的应用研究[D]. 成都: 电子科技大学, 2018

    Zang Rui. Research on application of time reversal technique in electromagnetic communication system[D]. Chengdu: University of Electronic Science and Technology of China, 2018)
    [6] Montaldo G, Palacio D, Tanter M, et al. Building three-dimensional images using a time-reversal chaotic cavity[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(9): 1489-1497. doi: 10.1109/TUFFC.2005.1516021
    [7] 臧锐, 王秉中, 丁帅, 等. 基于反演场扩散消除的时间反演多目标成像技术[J]. 物理学报, 2016, 65:204102. (Zang Rui, Wang Bingzhong, Ding Shuai, et al. Time reversal multi-target imaging technique based on eliminating the diffusion of the time reversal field[J]. Acta Physica Sinica, 2016, 65: 204102 doi: 10.7498/aps.65.204102
    [8] Derode A, Tourin A, Fink M. Ultrasonic pulse compression with one-bit time reversal through multiple scattering[J]. Journal of Applied Physics, 1999, 85(9): 6343-6352. doi: 10.1063/1.370136
    [9] Hong S K, Lathrop E, Mendez V M, et al. Ultrashort microwave pulse generation by passive pulse compression in a compact reverberant cavity[J]. Progress in Electromagnetics Research, 2015, 153: 113-121. doi: 10.2528/PIER15092406
    [10] 陈秋菊, 姜秋喜, 曾芳玲, 等. 基于时间反演电磁波的稀疏阵列单频信号空间功率合成[J]. 物理学报, 2015, 64:204101. (Chen Qiuju, Jiang Qiuxi, Zeng Fangling, et al. Single frequency spatial power combining using sparse array based on time reversal of electromagnetic wave[J]. Acta Physica Sinica, 2015, 64: 204101 doi: 10.7498/aps.64.204101
    [11] Cozza A, el-Aileh A E B A. Accurate radiation-pattern measurements in a time-reversal electromagnetic chamber[J]. IEEE Antennas and Propagation Magazine, 2010, 52(2): 186-193. doi: 10.1109/MAP.2010.5525625
    [12] Taddese B T. Sensing small changes in a wave chaotic scattering system and enhancing wave focusing using time reversal mirrors[D]. College Park: University of Maryland, 2012.
    [13] Taddese B T, Gradoni G, Moglie F, et al. Quantifying volume changing perturbations in a wave chaotic system[J]. New Journal of Physics, 2013, 15: 023025. doi: 10.1088/1367-2630/15/2/023025
    [14] Lerosey G, de Rosny J, Tourin A, et al. Time reversal of electromagnetic waves[J]. Physical Review Letters, 2004, 92: 193904. doi: 10.1103/PhysRevLett.92.193904
    [15] Anlage S M, Rodgers J, Hemmady S, et al. New results in chaotic time-reversed electromagnetics: high frequency one-recording-channel time-reversal mirror[J]. Acta Physica Polonica A, 2007, 112(4): 569-574. doi: 10.12693/APhysPolA.112.569
    [16] Holloway C L, Shah H A, Pirkl R J, et al. Early time behavior in reverberation chambers and its effect on the relationships between coherence bandwidth, chamber decay time, RMS delay spread, and the chamber buildup time[J]. IEEE Transactions on Electromagnetic Compatibility, 2012, 54(4): 714-725. doi: 10.1109/TEMC.2012.2188896
    [17] Nitsch J B, Tkachenko S V, Potthast S. Transient excitation of rectangular resonators through electrically small circular holes[J]. IEEE Transactions on Electromagnetic Compatibility, 2012, 54(6): 1252-1259. doi: 10.1109/TEMC.2012.2201724
    [18] 陆希成, 王建国, 韩峰, 等. 复杂腔体本征电磁场空间分布的统计方法[J]. 强激光与粒子束, 2011, 23(8):2167-2173. (Lu Xicheng, Wang Jianguo, Han Feng, et al. Statistics method of eigen-electromagnetic field spatial distribution in complex cavities[J]. High Power Laser and Particle Beams, 2011, 23(8): 2167-2173 doi: 10.3788/HPLPB20112308.2167
    [19] 陆希成, 王建国, 韩峰, 等. 3维微波腔体本征频率的统计分析[J]. 强激光与粒子束, 2011, 23(12):3367-3371. (Lu Xicheng, Wang Jianguo, Han Feng, et al. Statistical analysis of eigenfrequencies for three-dimensional microwave cavities[J]. High Power Laser and Particle Beams, 2011, 23(12): 3367-3371 doi: 10.3788/HPLPB20112312.3367
    [20] 陆希成, 王建国, 刘钰, 等. 基于天线辐射理论构建微波混沌腔的随机耦合模型[J]. 物理学报, 2013, 62:070504. (Lu Xicheng, Wang Jianguo, Liu Yu, et al. Based on antenna theory to establish the random coupling model of microwave chaotic cavities[J]. Acta Physica Sinica, 2013, 62: 070504 doi: 10.7498/aps.62.070504
    [21] Carminati R, Pierrat R, de Rosny J, et al. Theory of the time reversal cavity for electromagnetic fields[J]. Optics Letters, 2007, 32(21): 3107-3109. doi: 10.1364/OL.32.003107
    [22] de Rosny J, Lerosey J, Fink M. Theory of electromagnetic time-reversal mirrors[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(10): 3139-3149. doi: 10.1109/TAP.2010.2052567
    [23] Cozza A. Increasing peak-field generation efficiency of reverberation chamber[J]. Electronics Letters, 2010, 46(1): 38-39. doi: 10.1049/el.2010.2857
    [24] 丁帅, 王秉中, 葛广顶, 等. 时间反演镜对时间反演电磁波聚焦特性影响因素的研究[J]. 物理学报, 2011, 60:104101. (Ding Shuai, Wang Bingzhong, Ge Guangding, et al. Influential factors of time reversal mirror on focusing property of time-reversed electromagnetic wave[J]. Acta Physica Sinica, 2011, 60: 104101 doi: 10.7498/aps.60.104101
    [25] 黄海燕. 时间反演电磁波传播特性研究[D]. 成都: 电子科技大学, 2014

    Huang Haiyan. Researches on propagation characteristics of time reversal electromagnetic wave[D]. Chengdu: University of Electronic Science and Technology of China, 2014)
    [26] 汪海波, 黄文华, 李平, 等. 应用互耦迭代法计算二维随机海面微波散射[J]. 微波学报, 2013, 29(2):71-74,78. (Wang Haibo, Huang Wenhua, Li Ping, et al. Application of mutual-coupling iteration to calculation of electromagnetic scattering from two-dimensional random sea surface[J]. Journal of Microwaves, 2013, 29(2): 71-74,78
    [27] Dezfooliyan A, Weiner A M. Experimental investigation of UWB impulse response and time reversal technique up to 12 GHz: omnidirectional and directional antennas[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(7): 3407-3415. doi: 10.1109/TAP.2012.2196927
    [28] Cozza A. Statistics of the performance of time reversal in a lossy reverberating medium[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2009, 80: 056604.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  795
  • HTML全文浏览量:  337
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-10
  • 修回日期:  2021-09-16
  • 网络出版日期:  2021-10-16
  • 刊出日期:  2021-12-15

目录

    /

    返回文章
    返回