留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁辐照金属铝膜材料释气效应研究

李尧 范杰清 张芳 谭群 郝建红 董志伟 赵强

李尧, 范杰清, 张芳, 等. 电磁辐照金属铝膜材料释气效应研究[J]. 强激光与粒子束, 2021, 33: 123008. doi: 10.11884/HPLPB202133.210191
引用本文: 李尧, 范杰清, 张芳, 等. 电磁辐照金属铝膜材料释气效应研究[J]. 强激光与粒子束, 2021, 33: 123008. doi: 10.11884/HPLPB202133.210191
Li Yao, Fan Jieqing, Zhang Fang, et al. Study on outgassing effect of electromagnetic radiation on aluminum film[J]. High Power Laser and Particle Beams, 2021, 33: 123008. doi: 10.11884/HPLPB202133.210191
Citation: Li Yao, Fan Jieqing, Zhang Fang, et al. Study on outgassing effect of electromagnetic radiation on aluminum film[J]. High Power Laser and Particle Beams, 2021, 33: 123008. doi: 10.11884/HPLPB202133.210191

电磁辐照金属铝膜材料释气效应研究

doi: 10.11884/HPLPB202133.210191
基金项目: 高功率微波重点实验室基金项目(6142605200301);国家自然科学基金委员会与中国工程物理研究院联合基金项目(U1730247)
详细信息
    作者简介:

    李 尧,719725465@qq.com

    通讯作者:

    张 芳,zhang_fang@iapcm.ac.cn

  • 中图分类号: TN30;O46

Study on outgassing effect of electromagnetic radiation on aluminum film

  • 摘要: 为研究空间环境中通用航天器表面覆盖的热控层电磁辐照效应,采用粒子模拟(PIC)和蒙特卡罗(MC)模拟相结合方法,建立了真空环境下电磁辐照航天器热控材料模型,模拟了场致电子发射、次级电子倍增、释气雪崩电离的全过程,并讨论了释气密度对热防护材料表面产生释气电离现象的影响。通过对比不同释气密度下该过程产生的电子和离子情况,获得热防护材料表面释气产生雪崩电离的阈值。模拟结果表明,当铝膜表面气体密度较小时,由于材料表面释气碰撞电离概率偏低而不会发生雪崩电离;只有当释气密度超过阈值时,材料表面释气碰撞电离过程加强,材料表面发生雪崩电离生成等离子体,等离子体吸收电磁波能量,其离子和电子总能量提升,可能对金属铝膜材料造成损伤。
  • 图  1  电磁波辐照航天器热控材料释气电离过程示意图

    Figure  1.  Schematic diagram of the outgassing and ionization process of spacecraft thermal control materials irradiated by electromagnetic waves

    图  2  不同氩原子密度时不同粒子的数量变化

    Figure  2.  Variation of the number of different particles at different argon atomic densities

    图  3  不同氩原子密度时不同粒子的能量变化

    Figure  3.  Variation of the energy of different particles at different argon atomic densities

    图  4   不同氩原子密度下的铝膜表面场强对比

    Figure  4.   Surface field strength of aluminum film at different argon atomic densities

  • [1] 王浚, 王佩广. 高超声速飞行器一体化防热与热控设计方法[J]. 北京航空航天大学学报, 2006, 32(10):1129-1134. (Wang Jun, Wang Peiguang. Integrated thermal protection and control system design methodology for hypersonic vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(10): 1129-1134 doi: 10.3969/j.issn.1001-5965.2006.10.002
    [2] Vaughan J R M. Multipactor[J]. IEEE Transactions on Electron Devices, 1988, 35(7): 1172-1180. doi: 10.1109/16.3387
    [3] Kishek R A, Lau Y Y. Multipactor discharge on a dielectric[J]. Physical Review Letters, 1998, 80(1): 193-196. doi: 10.1103/PhysRevLett.80.193
    [4] 应旭华, 郝建红, 范杰清. 双边二次电子倍增效应分析[J]. 强激光与粒子束, 2009, 21(6):906-910. (Ying Xuhua, Hao Jianhong, Fan Jieqing. Analysis of two-surface multipactor discharge[J]. High Power Laser and Particle Beams, 2009, 21(6): 906-910
    [5] 黄建国, 韩建伟. 航天器内部充电效应及典型事例分析[J]. 物理学报, 2010, 59(4):2907-2913. (Huang Jianguo, Han Jianwei. Analysis of a typical internal charging induced spacecraft anomaly[J]. Acta Physica Sinica, 2010, 59(4): 2907-2913 doi: 10.7498/aps.59.2907
    [6] 蔡利兵, 王建国. 微波磁场和斜入射对介质表面次级电子倍增的影响[J]. 物理学报, 2010, 59(2):1143-1147. (Cai Libing, Wang Jianguo. Effects of the microwave magnetic field and oblique incident microwave on multipactor discharge on a dielectric surface[J]. Acta Physica Sinica, 2010, 59(2): 1143-1147 doi: 10.7498/aps.59.1143
    [7] 蔡利兵, 王建国. 介质表面高功率微波击穿中释气现象的数值模拟研究[J]. 物理学报, 2011, 60:025217. (Cai Libing, Wang Jianguo. Numerical simulation of outgassing in the breakdown on dielectric surface irradiated by high power microwave[J]. Acta Physica Sinica, 2011, 60: 025217 doi: 10.7498/aps.60.025217
    [8] 董烨, 董志伟, 周前红, 等. 释气对介质沿面闪络击穿影响的粒子模拟[J]. 物理学报, 2014, 63:027901. (Dong Ye, Dong Zhiwei, Zhou Qianhong, et al. Particle-in-cell simulation on effect of outgassing on flashover and breakdown on dielectric surface in high-power microwave environment[J]. Acta Physica Sinica, 2014, 63: 027901 doi: 10.7498/aps.63.027901
    [9] Forbes R G, Deane J H B. Reformulation of the standard theory of Fowler-Nordheim tunnelling and cold field electron emission[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2007, 463(2687): 2907-2927.
    [10] Kishek R A, Lau Y Y, Ang L K, et al. Multipactor discharge on metals and dielectrics: historical review and recent theories[J]. Physics of Plasmas, 1998, 5(5): 2120-2126. doi: 10.1063/1.872883
    [11] 李小泽, 王建国, 童长江, 等. 充填不同气体相对论返波管特性的PIC-MCC模拟[J]. 物理学报, 2008, 57(7):4613-4622. (Li Xiaoze, Wang Jianguo, Tong Changjiang, et al. PIC-MCC simulations on characteristics of RBWO filled with different gases[J]. Acta Physica Sinica, 2008, 57(7): 4613-4622 doi: 10.7498/aps.57.4613
    [12] 董烨, 周前红, 董志伟, 等. 高功率微波沿面闪络击穿机制粒子模拟[J]. 强激光与粒子束, 2013, 25(4):950-958. (Dong Ye, Zhou Qianhong, Dong Zhiwei, et al. PIC simulation of mechanism of high power microwave flashover and breakdown on dielectric surface[J]. High Power Laser and Particle Beams, 2013, 25(4): 950-958 doi: 10.3788/HPLPB20132504.0950
    [13] Atomic and Molecular Data Unit Activities[DB/OL]. http://www-amdis.iaea.Org/ALADDIN
    [14] Vahedi V, Surendra M. A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges[J]. Computer Physics Communications, 1995, 87(1/2): 179-198.
    [15] Kanaya K, Kawakatsu H. Secondary electron emission due to primary and backscattered electrons[J]. Journal of Physics D:Applied Physics, 1972, 5(9): 1727-1742. doi: 10.1088/0022-3727/5/9/330
  • 加载中
图(4)
计量
  • 文章访问数:  705
  • HTML全文浏览量:  295
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-20
  • 修回日期:  2021-10-20
  • 网络出版日期:  2021-11-03
  • 刊出日期:  2021-12-15

目录

    /

    返回文章
    返回