留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变纤芯直径传能光纤中受激拉曼散射传输特性的理论研究

王力 王小林 张汉伟 陈子伦 许晓军

王力, 王小林, 张汉伟, 等. 变纤芯直径传能光纤中受激拉曼散射传输特性的理论研究[J]. 强激光与粒子束, 2021, 33: 111011. doi: 10.11884/HPLPB202133.210225
引用本文: 王力, 王小林, 张汉伟, 等. 变纤芯直径传能光纤中受激拉曼散射传输特性的理论研究[J]. 强激光与粒子束, 2021, 33: 111011. doi: 10.11884/HPLPB202133.210225
Wang Li, Wang Xiaoling, Zhang Hanwei, et al. Theoretical study on transmission characteristics of stimulated Raman scattering in passive fiber with variable core radius[J]. High Power Laser and Particle Beams, 2021, 33: 111011. doi: 10.11884/HPLPB202133.210225
Citation: Wang Li, Wang Xiaoling, Zhang Hanwei, et al. Theoretical study on transmission characteristics of stimulated Raman scattering in passive fiber with variable core radius[J]. High Power Laser and Particle Beams, 2021, 33: 111011. doi: 10.11884/HPLPB202133.210225

变纤芯直径传能光纤中受激拉曼散射传输特性的理论研究

doi: 10.11884/HPLPB202133.210225
详细信息
    作者简介:

    王 力,13545485054@163.com

    通讯作者:

    王小林,chinawxllin@163.com

    许晓军,xu_xiaojun@126.com

  • 中图分类号: TN242

Theoretical study on transmission characteristics of stimulated Raman scattering in passive fiber with variable core radius

  • 摘要: 锥形光纤纤芯直径沿着光纤长度方向均匀增大,在抑制非线性效应方面有着独特的优势。理论对比了单横模高斯光束输入时,输入纤芯直径均为50 μm、纤芯直径沿着光纤长度方向恒定、线性增大和非线性增大的变纤芯直径传能光纤的输出光谱演化和拉曼光特性。在相同条件下,输入功率10 kW时,恒定型传能光纤的输出光谱中,拉曼抑制比(定义为输出光谱中信号光峰值强度分贝值与拉曼光峰值强度分贝值之差)为33.1 dB,线性增大和非线性增大型的输出拉曼抑制比分别为47.0,48.6 dB,分别优于恒定型传能光纤13.9,15.5 dB;输入功率达17.5 kW时,恒定型传能光纤中有81.6%的输入能量被耗散或转移到其他波长,线性增大和非线性增大型仅不到2%,其输出的信号光波段能量占总输入能量的98.1%,98.9%。结果表明,使用线性增大型或非线性增大型传能光纤代替恒定型常规光纤,可以有效提高受激拉曼散射阈值,相关研究可以为大功率光纤合束器和光纤端帽的设计提供有益参考。
  • 图  1  三种不同纤芯形状的传能光纤剖面及芯径变化示意图

    Figure  1.  Profile and radius change diagram of energy transmission fiber with different core shapes

    图  2  仿真光纤的尺寸参数和输入光谱

    Figure  2.  Size parameters and input spectrum of simulated optical fibers

    图  3  输入为10 kW时的输出光谱

    Figure  3.  Output spectrum at 10 kW input

    图  4  输入17.5 kW时的拉曼光功率分布

    Figure  4.  Raman power distribution at 17.5 kW input

    图  5  不同拉锥长度的仿真结果

    Figure  5.  Simulation results of different taper lengths

    图  6  不同拉锥比例的仿真结果

    Figure  6.  Simulation results of different taper ratios

    图  7  不同形状参数的仿真结果

    Figure  7.  Simulation results of different shape parameters

    表  1  不同输入光功率条件下的拉曼抑制比和信号光能量占比

    Table  1.   Raman suppression ratio and proportion of signal light energy at different input power

    No.input power/kWRaman suppression ratio/dBproportion of signal light energy/%
    constantlinearnonlinear constant linear nonlinear
    1 10.0 33.1 47.0 48.6 99.2 100 100
    2 12.5 22.7 40.3 42.3 93.6 99.8 99.9
    3 15.0 13.1 34.2 36.6 64.5 99.5 99.7
    4 17.5 4.1 28.5 31.3 18.4 98.1 98.9
    5 20.0 0.0 22.3 25.4 2.6 93.0 96.4
    下载: 导出CSV

    表  2  不同拉锥比例的仿真结果

    Table  2.   Simulation results of different taper ratios

    No.input radius/μmoutput radius/μmSRS suppression ratio/dBproportion of signal light energy/%
    1 25 20 0 0
    2 25 25 0 2.7
    3 25 30 11.3 54.5
    4 25 35 22.3 93.2
    5 25 40 30.1 98.7
    6 25 45 35.8 99.6
    7 25 50 40.1 99.8
    下载: 导出CSV
  • [1] Filippov V, Chamorovskii Y, Kerttula J, et al. Double clad tapered fiber for high power applications[J]. Optics Express, 2008, 16(3): 1929-1944. doi: 10.1364/OE.16.001929
    [2] Filippov V, Chamorovskii Y, Kerttula J, et al. 600 W power scalable single transverse mode tapered double-clad fiber laser[J]. Optics Express, 2009, 17(3): 1203-1214. doi: 10.1364/OE.17.001203
    [3] Filippov V, Kerttula J, Chamorovskii Y, et al. Highly efficient 750 W tapered double-clad ytterbium fiber laser[J]. Optics Express, 2010, 18(12): 12499-12512. doi: 10.1364/OE.18.012499
    [4] Kerttula J, Filippov V, Ustimchik V, et al. Mode evolution in long tapered fibers with high tapering ratio[J]. Optics Express, 2012, 20(23): 25461-25470. doi: 10.1364/OE.20.025461
    [5] Kerttula J, Filippov V, Chamorovskii Y, et al. Tapered fiber amplifier with high gain and output power[J]. Laser Physics, 2012, 22(11): 1734-1738. doi: 10.1134/S1054660X12110059
    [6] Shi Chen, Wang Xiaolin, Zhou Pu, et al. Theoretical study of mode evolution in active long tapered multimode fiber[J]. Optics Express, 2016, 24(17): 19473-19490. doi: 10.1364/OE.24.019473
    [7] 王小林, 张汉伟, 杨保来, 等. 高功率掺镱光纤振荡器: 研究现状与发展趋势[J]. 中国激光, 2021, 48:0401004. (Wang Xiaolin, Zhang Hanwei, Yang Baolai, et al. High-power ytterbium-doped fiber laser oscillator: current situation and future developments[J]. Chinese Journal of Lasers, 2021, 48: 0401004 doi: 10.3788/CJL202148.0401004
    [8] Zeng Lingfa, Xi Xiaoming, Ye Yun, et al. Near-single-mode 3 kW monolithic fiber oscillator based on a longitudinally spindle-shaped Yb-doped fiber[J]. Optics Letters, 2020, 45(20): 5792-5795. doi: 10.1364/OL.404893
    [9] 奚小明, 杨欢, 曾令筏, 等. 国产纺锤形增益光纤主振荡功率放大器实现5kW输出[J]. 强激光与粒子束, 2021, 33:021001. (Xi Xiaoming, Yang Huan, Zeng Lingfa, et al. 5 kW all-fiber amplifier based on homemade spindle-shaped Yb-doped fiber[J]. High Power Laser and Particle Beams, 2021, 33: 021001
    [10] 史尘. 高功率长锥形掺镱光纤放大器研究[D]. 长沙: 国防科学技术大学, 2017: 1-21

    Shi Chen. The study of high power long tapered fiber amplifiers[D]. Changsha: National University of Defense Technology, 2017: 1-21
    [11] Roy V, Paré C, Labranche B, et al. Yb-doped large mode area tapered fiber with depressed cladding and dopant confinement[C]. Proceedings SPIE 10083 Fiber Lasers XIV: Technology and Systems. 2017: 1008314.
    [12] 阿戈沃 G P. 非线性光纤光学[M]. 贾东方, 葛春风, 译. 5版. 北京: 电子工业出版社, 2014: 27, 203-206

    Agrawal G P. Nonlinear fiber optics[M]. Jia Dongfang, Ge Chunfeng, trans. 5th ed. Beijing: Publishing House of Electronics Industry, 2014: 27, 203-206
    [13] Smith R G. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering[J]. Applied Optics, 1972, 11(11): 2489-2494. doi: 10.1364/AO.11.002489
    [14] 欧攀, 贾豫东, 白明, 等. 高等光学仿真(Matlab版)——光波导, 激光[M]. 2版. 北京: 北京航空航天大学出版社, 2014

    Ou Pan, Jia Yudong, Bai Ming, et al. Advanced optical simulation (MATLAB version), optical waveguide and laser[M]. 2nd ed. Beijing: Beihang University Press, 2014
    [15] Stolen R H, Gordon J P, Tomlinson W J, et al. Raman response function of silica-core fibers[J]. Journal of the Optical Society of America B, 1989, 6(6): 1159-1166. doi: 10.1364/JOSAB.6.001159
    [16] Blow K J, Wood D. Theoretical description of transient stimulated Raman scattering in optical fibers[J]. IEEE Journal of Quantum Electronics, 1989, 25(12): 2665-2673. doi: 10.1109/3.40655
    [17] Ye Yun, Lin Xianfeng, Xi Xiaoming, et al. Novel constant-cladding tapered-core ytterbium-doped fiber for high-power fiber laser oscillator[J]. High Power Laser Science and Engineering, 2021, 9: e21. doi: 10.1017/hpl.2021.9
    [18] 王小林, 史尘, 杨保来, 等. 一种基于锥形光纤的高功率光纤端帽: CN207081848U[P]. 2018-03-09

    Wang Xiaolin, Shi Chen, Yang Baolai, et al. High-power fiber end cap based on tapered fiber: CN207081848U[P]. 2018-03-09
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  694
  • HTML全文浏览量:  291
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-07
  • 修回日期:  2021-10-20
  • 网络出版日期:  2021-11-01
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回