留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳秒脉冲放电紫外光纤阵列检测与定位方法

陈玉 郭洁琳 钟辉 孙冠姝 陈志强 贾伟

陈玉, 郭洁琳, 钟辉, 等. 纳秒脉冲放电紫外光纤阵列检测与定位方法[J]. 强激光与粒子束, 2021, 33: 115001. doi: 10.11884/HPLPB202133.210226
引用本文: 陈玉, 郭洁琳, 钟辉, 等. 纳秒脉冲放电紫外光纤阵列检测与定位方法[J]. 强激光与粒子束, 2021, 33: 115001. doi: 10.11884/HPLPB202133.210226
Chen Yu, Guo Jielin, Zhong Hui, et al. Detection and location method of nanosecond pulse discharge ultraviolet fiber array[J]. High Power Laser and Particle Beams, 2021, 33: 115001. doi: 10.11884/HPLPB202133.210226
Citation: Chen Yu, Guo Jielin, Zhong Hui, et al. Detection and location method of nanosecond pulse discharge ultraviolet fiber array[J]. High Power Laser and Particle Beams, 2021, 33: 115001. doi: 10.11884/HPLPB202133.210226

纳秒脉冲放电紫外光纤阵列检测与定位方法

doi: 10.11884/HPLPB202133.210226
详细信息
    作者简介:

    陈 玉,chenyu@xjtu.edu.cn

  • 中图分类号: O461.2+5

Detection and location method of nanosecond pulse discharge ultraviolet fiber array

  • 摘要: 峰化电容作为电磁脉冲模拟器中用于陡化脉冲输出的关键部件,在实际工程应用中易发生沿面放电和击穿现象,采用光电检测系统可对绝缘沿面放电现象进行有效分析。针对峰化电容器沿面放电监测的技术难题,研制了一套绝缘沿面放电过程光电检测系统,对绝缘沿面放电现象进行光电检测。首先提出了绝缘介质沿面放电过程光电探测系统的设计方案;其次,对系统的时延性能进行了评价;最后,完成了绝缘介质沿面放电过程定位实验,验证了光电探测系统的可行性。实验表明,该系统能够实现对放电区域的有效定位。
  • 图  1  峰化电容器的结构示意图

    Figure  1.  Structure diagram of peaking capacitor

    图  2  峰化电容电路

    Figure  2.  Circuit of peaking capacitor

    图  3  聚丙烯试样及圆形电极结构示意图

    Figure  3.  Structure diagram of polypropylene sample and circular electrode

    图  4  试样及圆形电极结构与光纤阵列俯视图

    Figure  4.  Top view of sample and circular electrode structure and optical fiber array

    图  5  光电二极管光谱响应曲线

    Figure  5.  Spectral response curve of photodiode

    图  6  纳秒脉冲放电光电检测系统示意图

    Figure  6.  Illustration of nanosecond pulse discharge photoelectric detection system

    图  7  纳秒脉冲放电光电检测系统实物图

    Figure  7.  Picturer of nanosecond pulse discharge photoelectric detection system

    图  8  纳秒脉冲放电电气信号测试结果

    Figure  8.  Nanosecond pulse discharge electrical signal test results

    图  9  纳秒脉冲放电光信号探测实验结果

    Figure  9.  Experimental results of nanosecond pulse discharge optical signal detection

    图  10  纳秒脉冲放电路径图像

    Figure  10.  Images of nanosecond pulse discharge path

    表  1  光电探测器响应时间测试结果

    Table  1.   Test results of photodetector response time

    photodioderesponse time of photodiode/ps
    PIN1206.3
    PIN2225.4
    PIN3229.8
    PIN4238.4
    PIN5225.4
    average value225.1
    下载: 导出CSV

    表  2  紫外光纤与光电二极管信号传输时间测量结果

    Table  2.   Measurement results of transmission time of UV fiber and photodiode combinations

    numbertransmission time/ns
    PIN1+FIBER152.01
    PIN2+FIBER251.49
    PIN3+FIBER351.16
    PIN4+FIBER451.81
    PIN5+FIBER552.01
    average value51.70
    下载: 导出CSV
  • [1] 徐双艳. 纳秒脉冲等离子体激励流动建模与数值模拟[D]. 西安: 西北工业大学, 2017.

    Xu Shuangyan. Modeling and numerical simulation of nanosecond-pulsed dielectric barrier discharge actuators[D]. Xi'an: Northwestern Polytechnical University, 2017
    [2] 王军毅. 大气压下CF4高压纳秒脉冲放电的光谱特征研究[D]. 上海: 东华大学, 2021.

    Wang Junyi. Investigation on spectral characteristics of CF4 high-voltage nanosecond pulse discharge in atmosphere[D]. Shanghai: Donghua University, 2021
    [3] Puertas E C, Dzafic A, Coulombe S. Investigation of the electrode erosion in pin-to-liquid discharges and its influence on reactive oxygen and nitrogen species in plasma-activated water[J]. Plasma Chemistry and Plasma Processing, 2020, 40(1): 145-167. doi: 10.1007/s11090-019-10036-3
    [4] 张帅. 纳秒脉冲空气均匀介质阻挡放电发射光谱诊断[D]. 大连: 大连理工大学, 2016.

    Zhang Shuai. Optical emission spectroscopy diagnosis of nanosecond pulsed air uniform dielectric barrier discharge[D]. Dalian: Dalian University of Technology, 2016
    [5] Miller J R. Perspective on electrochemical capacitor energy storage[J]. Applied Surface Science, 2018, 460: 3-7. doi: 10.1016/j.apsusc.2017.10.018
    [6] Jia Wei, Chen Zhiqiang, Tang Junping, et al. A 800 kV compact peaking capacitor for nanosecond generator[J]. Review of Scientific Instruments, 2014, 85: 094706. doi: 10.1063/1.4895158
    [7] 李阳, 孙铁平, 盛亮, 等. 多间隙气体开关光纤诊断[J]. 强激光与粒子束, 2012, 24(8):2000-2004. (Li Yang, Sun Tieping, Sheng Liang, et al. Diagnosis of multi-gap gas switch with optical fiber detectors[J]. High Power Laser and Particle Beams, 2012, 24(8): 2000-2004 doi: 10.3788/HPLPB20122408.2000
    [8] 丛培天, 邱爱慈, 孙铁平, 等. 多间隙气体开关触发放电过程及击穿抖动[J]. 强激光与粒子束, 2013, 25(5):1303-1306. (Cong Peitian, Qiu Aici, Sun Tieping, et al. Discharge process and closure jitter of six-stage gas switch under pulsed trigger[J]. High Power Laser and Particle Beams, 2013, 25(5): 1303-1306 doi: 10.3788/HPLPB20132505.1303
    [9] 李俊娜, 汤俊萍, 陈维青, 等. 利用光纤诊断紫外预电离开关的导通特性[J]. 高压电器, 2010, 46(2):83-85,90. (Li Junna, Tang Junping, Chen Weiqing, et al. Diagnosis of discharge characteristics of UV illumination switch using fiber sensor[J]. High Voltage Apparatus, 2010, 46(2): 83-85,90
    [10] 程淑英. 高能紫外光纤传输阵列[J]. 半导体光电, 2005, 26(3):190-192. (Cheng Shuying. High-power UV optical fiber transmission array[J]. Semiconductor Optoelectronics, 2005, 26(3): 190-192 doi: 10.3969/j.issn.1001-5868.2005.03.007
    [11] Palati M, Agarwal R, Sharma A, et al. Generation of sub-nanosecond pulses using peaking capacitor[J]. Journal of Electrical Systems and Information Technology, 2017, 4(1): 95-106. doi: 10.1016/j.jesit.2016.10.010
    [12] 王倩. 大气压下空气/SF6放电的光谱特性[D]. 哈尔滨: 哈尔滨理工大学, 2014.

    Wang Qian. Spectral characters of Air/SF6 discharge under atmospheric pressure[D]. Harbin: Harbin University of Science and Technology, 2014
    [13] 郭洁琳. 基于紫外光纤阵列的纳秒脉冲放电光电检测系统的研制[D]. 西安: 西安交通大学, 2016.

    Guo Jielin. Development of photoelectric detective system for nanosecond pulse discharge based on ultraviolet optical fibers array[D]. Xi’an: Xi’an Jiaotong University, 2016
    [14] 徐熙平, 张宁. 光电检测技术及应用[M]. 北京: 机械工业出版社, 2012.

    Xu Xiping, Zhang Ning. Photoelectric detection technology and its application[M]. Beijing: China Machine Press, 2012
    [15] 方武良. 基于多模光纤的高速光传输研究[D]. 上海: 复旦大学, 2012.

    Fang Wuliang. High speed optical transmission based on multimode fiber[D]. Shanghai: Fudan University, 2012
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  655
  • HTML全文浏览量:  264
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-08
  • 修回日期:  2021-10-20
  • 网络出版日期:  2021-10-27
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回