留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于遗传模型改进蜂群算法的稀疏阵列优化

孙建邦 李建兵 王鼎 孙玉琦 罗志豪

孙建邦, 李建兵, 王鼎, 等. 基于遗传模型改进蜂群算法的稀疏阵列优化[J]. 强激光与粒子束, 2021, 33: 123005. doi: 10.11884/HPLPB202133.210233
引用本文: 孙建邦, 李建兵, 王鼎, 等. 基于遗传模型改进蜂群算法的稀疏阵列优化[J]. 强激光与粒子束, 2021, 33: 123005. doi: 10.11884/HPLPB202133.210233
Sun Jianbang, Li Jianbing, Wang Ding, et al. Thinned array optimization based on genetic model improved artificial bee colony algorithm[J]. High Power Laser and Particle Beams, 2021, 33: 123005. doi: 10.11884/HPLPB202133.210233
Citation: Sun Jianbang, Li Jianbing, Wang Ding, et al. Thinned array optimization based on genetic model improved artificial bee colony algorithm[J]. High Power Laser and Particle Beams, 2021, 33: 123005. doi: 10.11884/HPLPB202133.210233

基于遗传模型改进蜂群算法的稀疏阵列优化

doi: 10.11884/HPLPB202133.210233
基金项目: 国家“核高基”重大专项项目(2017ZX01004-101-009A)
详细信息
    作者简介:

    孙建邦,xyqm818@163.com

    通讯作者:

    李建兵,49286894@qq.com

  • 中图分类号: TN82

Thinned array optimization based on genetic model improved artificial bee colony algorithm

  • 摘要: 人工蜂群算法作为一种新兴的群体智能算法,在解决复杂连续问题时表现突出。但是由于算法本身内在运行机制的原因,算法在搜索上表现出优异的性能,却疏于开发。为了平衡搜索和开发二者之间的矛盾,提出了一种基于遗传模型改进的人工蜂群算法,并成功运用到了阵列综合领域。算法先将全局最优解引入邻域搜索过程,指导蜂群寻找最佳蜜源,加速算法收敛。为了避免人工蜂群算法陷入局部最优,需要提高其开发能力,通过借鉴遗传算法中的进化机制,建立了遗传模型,对采取最佳保留后的蜜源进行遗传操作,丰富蜜源的多样性。在一组广泛使用的数值函数上对改进人工蜂群算法进行了测试,实验数据表明,该算法相较于其他算法具有很强的竞争力。将该算法运用于线性阵列的稀疏优化,旨在降低阵列的峰值旁瓣电平,在同样的阵列约束下与其他算法进行了优化对比,仿真结果进一步证明了算法的有效性。
  • 图  1  均匀直线阵列

    Figure  1.  Uniform linear array

    图  2  稀疏阵列

    Figure  2.  Thinned array

    图  3  标准人工蜂群算法邻域搜索方式

    Figure  3.  Neighborhood search method of artificial bee colony algorithm

    图  4  全局邻域搜索方式

    Figure  4.  Global artificial bee colony algorithm neighborhood search method

    图  5  不同稀疏率下GMIABC算法优化结果

    Figure  5.  Optimization results of GMIABC algorithm at different sparsity rates

    图  6  稀疏率η=70%时GMIABC与GA,ABC算法的阵列稀疏优化对比

    Figure  6.  Comparison of array sparsity optimization between GMIABC, GA and ABC algorithms when sparsity rate η=70%

    图  7  GMIABC算法与文献[27]算法的阵列稀疏优化对比

    Figure  7.  Comparison of array sparsity optimization between GMIABC algorithm and in Ref. [27] algorithm

    表  1  基准数值函数

    Table  1.   Benchmark numerical functions

    functionexpressionrangeminimum value
    Sphere $ {f}_{1}\left(x\right)={\displaystyle\sum }_{i=1}^{D}{x}_{i}^{2} $ $ {\left[-\mathrm{100,100}\right]}^{D} $ 0
    Elliptic $ {f}_{2}\left(x\right)={\displaystyle\sum }_{i=1}^{D}{{\left({10}^{6}\right)}^{\tfrac{i-1}{D-1}}}x_{i}^{2} $ $ {\left[-\mathrm{100,100}\right]}^{D} $ 0
    SumSquare $ {f}_{3}\left(x\right)={\displaystyle\sum }_{i=1}^{D}{ix}_{i}^{2} $ $ {\left[-\mathrm{10,10}\right]}^{D} $ 0
    Exponential ${f}_{4}\left(x\right)=\mathrm{e}\mathrm{x}\mathrm{p}\left(0.5 {\displaystyle\sum }_{i=1}^{D}{x}_{i}\right)$ $ {\left[-\mathrm{10,10}\right]}^{D} $ 0
    Rosenbrock $ {f}_{5}\left(x\right)={\displaystyle\sum }_{i}^{D-1}\left[{100\left({x}_{i+1}-{x}_{i}^{2}\right)}^{2}-{\left({x}_{i}-1\right)}^{2}\right] $ $ {\left[-\mathrm{5,10}\right]}^{D} $ 0
    Rastrigin $ {f}_{6}\left(x\right)={\displaystyle\sum }_{i}^{D}\left[{x}_{i}^{2}-10\mathrm{cos}\left(2\pi {x}_{i}\right)+10\right] $ $ {\left[-\mathrm{5.12,5.12}\right]}^{D} $ 0
    Himmelblau $ {f}_{7}\left(x\right)=1/\mathrm{D}{\displaystyle\sum }_{i}^{D}\left[{x}_{i}^{4}-16{x}_{i}^{2}+5{x}_{i}\right] $ $ {\left[-\mathrm{5,5}\right]}^{D} $ −78.33236
    下载: 导出CSV

    表  2  GMIABC与ABC,GABC算法比较

    Table  2.   Comparison of GMIABC, ABC and GABC algorithms

    algorithm$ {f}_{1}\left(x\right) $$ {f}_{2}\left(x\right) $$ {f}_{3}\left(x\right) $$ {f}_{4}\left(x\right) $$ {f}_{5}\left(x\right) $$ {f}_{6}\left(x\right) $$ {f}_{7}\left(x\right) $
    ABCmean2.42e−154.52e−87.32e–157.18e−214.75e−011.34e−13−78.332
    std3.20e−154.83e−88.18e−157.21e−215.81e−011.97e−130
    GABCmean5.12e−164.19e−165.25e–157.18e−239.71e−020−78.332
    std4.35e−174.25e−166.18e−157.07e−231.01e−0103.13e−15
    GAmean1.23e−134.47e−128.10e−1104.1675e−050−78.332
    std1.63e−135.77e−127.82e−1105.0100e−0501.0974e−14
    GMIABCmean3.73e−234.99e−213.57e−2001.910158e−070−78.33233
    std4.16e−231.21e−206.93e−2002.110158e−0700
    下载: 导出CSV

    表  3  GMIABC与GA, ABC,ABCSIM算法阵列稀疏优化比较

    Table  3.   Comparison of sparsity optimization between GMIABC and GA, ABC and ABCSIM algorithms

    algorithmmin/dBmean/dBstdmin/dBmean/dBstdmin/dBmean/dBstdmin/dBmean/dBstd
    η=50%(Nt= 50)η=60%(Nt =60)η=70%(Nt =70)η=80%(Nt =80)
    GA −15.935 −15.677 0.189 −18.121 −17.521 0.353 −19.378 −19.110 0.187 −20.941 −20.752 0.178
    ABC −15.330 −15.061 0.237 −16.806 −16.563 0.207 −18.386 −17.722 0.423 −19.836 −18.430 0.967
    ABCSIM −17.211 −16.863 0.262 −17.426 −17.158 0.217 −18.202 −17.588 0.429 −18.172 −17.764 0.331
    GMIABC min/dB −18.541 −18.281 0.227 −19.368 −19.200 0.135 −21.365 −20.892 0.171 −21.338 −21.573 0.175
    下载: 导出CSV
  • [1] Wang Lei, Zhang Xin, Zhang Xiu. Antenna array design by artificial bee colony algorithm with similarity induced search method[J]. IEEE Transactions on Magnetics, 2019, 55: 7201904.
    [2] Xiao Songyi, Wang Hui, Wang Wenjun, et al. Artificial bee colony algorithm based on adaptive neighborhood search and Gaussian perturbation[J]. Applied Soft Computing, 2021, 100: 106955. doi: 10.1016/j.asoc.2020.106955
    [3] 庞育才, 刘松. 基于改进人工蜂群算法的MIMO雷达稀疏阵列优化[J]. 系统工程与电子技术, 2018, 40(5):1026-1030. (Pang Yucai, Liu Song. Optimization of MIMO radar sparse array based on modified artificial bee colony[J]. Systems Engineering and Electronics, 2018, 40(5): 1026-1030 doi: 10.3969/j.issn.1001-506X.2018.05.10
    [4] Reddy K Y, Kumar R B, Jijenth M, et al. Synthesis of randomly spaced planar antenna array with low peak side lobe level (PSLL) using Modified Genetic Algorithm[C]//2017 IEEE International Conference on Antenna Innovations & Modern Technologies for Ground, Aircraft and Satellite Applications (iAIM). IEEE, 2017: 524-527.
    [5] Sallam T, Attiya A. Low sidelobe cosecant-squared pattern synthesis for large planar array using genetic algorithm[J]. Progress in Electromagnetics Research M, 2020, 93: 23-34. doi: 10.2528/PIERM20042005
    [6] Laseetha T S J, Sukanesh R. Synthesis of linear antenna array using genetic algorithm to maximize sidelobe level reduction[J]. International Journal of Computer Applications, 2011, 20(7): 27-33. doi: 10.5120/2445-3302
    [7] Goudos S K, Moysiadou V, Samaras T, et al. Application of a comprehensive learning particle swarm optimizer to unequally spaced linear array synthesis with sidelobe level suppression and null control[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 125-129. doi: 10.1109/LAWP.2010.2044552
    [8] Gangwar V S, Singh A K, Thomas E, et al. Side lobe level suppression in a thinned linear antenna array using particle swarm optimization[C]//2015 International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT). IEEE, 2015: 787-790.
    [9] Recioui A. Sidelobe level reduction in linear array pattern synthesis using particle swarm optimization[J]. Journal of Optimization Theory and Applications, 2012, 153(2): 497-512. doi: 10.1007/s10957-011-9953-9
    [10] Behera A K, Ahmad A, Mandal S K, et al. Synthesis of cosecant squared pattern in linear antenna arrays using differential evolution[C]//Proceedings of 2013 IEEE Conference on Information & Communication Technologies. IEEE, 2013: 1025-1028.
    [11] Cui Chaoyi, Jiao Yongchang, Zhang Li, et al. Synthesis of Subarrayed Monopluse arrays with contiguous elements using a DE algorithm[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 4340-4345. doi: 10.1109/TAP.2017.2714021
    [12] Zhang Ze, Su Wentao, Zhou Kaifu. Airborne radar sub array partitioning method based on artificial bee colony algorithm[C]//2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). IEEE, 2019: 484-489.
    [13] Zhang Xin, Zhang Xiu, Wang Lei. Antenna design by an adaptive variable differential artificial bee colony algorithm[J]. IEEE Transactions on Magnetics, 2018, 54: 7201704.
    [14] Goudos S K, Siakavara K, Sahalos J N. Novel spiral antenna design using artificial bee colony optimization for UHF RFID applications[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 528-531. doi: 10.1109/LAWP.2014.2311653
    [15] Chatterjee A, Mandal D. Synthesis of hexagonal planar array using swarm-based optimization algorithms[J]. International Journal of Microwave and Wireless Technologies, 2015, 7(2): 151-160. doi: 10.1017/S1759078714000683
    [16] 崔佩璋, 全厚德, 乔成林. 基于改进蜂群算法的非均匀阵列综合[J]. 火力与指挥控制, 2016, 41(12):87-90. (Cui Peizhang, Quan Houde, Qiao Chenglin. Synthesis of non-uniform arrays using modified bees algorithm[J]. Fire Control & Command Control, 2016, 41(12): 87-90 doi: 10.3969/j.issn.1002-0640.2016.12.019
    [17] 杨群, 曹祥玉, 高军, 等. 基于改进的人工蜂群算法的阵列综合研究[J]. 微波学报, 2014, 30(s1):37-40. (Yang Qun, Cao Xiangyu, Gao Jun, et al. Array synthesis on the basis of an improved artificial bee colony algorithm[J]. Journal of Microwaves, 2014, 30(s1): 37-40
    [18] Wang Hui, Wang Wenjun, Xiao Songyi, et al. Improving artificial Bee colony algorithm using a new neighborhood selection mechanism[J]. Information Sciences, 2020, 527: 227-240. doi: 10.1016/j.ins.2020.03.064
    [19] Karaboga D. An idea based on honey bee swarm for numerical optimization[R]. Kayseri, Türkey: Erciyes University, 2005.
    [20] Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization, 2007, 39(3): 459-471. doi: 10.1007/s10898-007-9149-x
    [21] Banharnsakun A, Achalakul T, Sirinaovakul B. The best-so-far selection in Artificial Bee Colony algorithm[J]. Applied Soft Computing, 2011, 11(2): 2888-2901. doi: 10.1016/j.asoc.2010.11.025
    [22] Črepinšek M, Liu S H, Mernik M. Exploration and exploitation in evolutionary algorithms[J]. ACM Computing Surveys, 2013, 45: 35.
    [23] Peng Hu, Deng Changshou, Wu Zhijian. Best neighbor-guided artificial bee colony algorithm for continuous optimization problems[J]. Soft Computing, 2019, 23(18): 8723-8740. doi: 10.1007/s00500-018-3473-6
    [24] Li Genghui, Cui Laizhong, Fu Xianghua, et al. Artificial bee colony algorithm with gene recombination for numerical function optimization[J]. Applied Soft Computing, 2017, 52: 146-159. doi: 10.1016/j.asoc.2016.12.017
    [25] Frisch K V. The dance language and orientation of bees[M]. Cambridge: Harvard University Press, 1967: 181-182.
    [26] Zhu Guopu, Kwong S. Gbest-guided artificial bee colony algorithm for numerical function optimization[J]. Applied Mathematics and Computation, 2010, 217(7): 3166-3173. doi: 10.1016/j.amc.2010.08.049
    [27] 陈客松, 何子述, 韩春林. 最佳稀疏直线阵列的分区穷举综合法[J]. 电子与信息学报, 2006, 28(11):2030-2032. (Chen Kesong, He Zishu, Han Chunlin. Divisional exhaustive method applied to optimum thinning of linear arrays[J]. Journal of Electronics & Information Technology, 2006, 28(11): 2030-2032
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  707
  • HTML全文浏览量:  451
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-11
  • 修回日期:  2021-11-15
  • 网络出版日期:  2021-11-20
  • 刊出日期:  2021-12-15

目录

    /

    返回文章
    返回