留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于支撑向量机算法的抗干扰混合波束成形系统

徐磊 臧月进 周新耀 刘观发 周藜莎

徐磊, 臧月进, 周新耀, 等. 基于支撑向量机算法的抗干扰混合波束成形系统[J]. 强激光与粒子束, 2021, 33: 123020. doi: 10.11884/HPLPB202133.210235
引用本文: 徐磊, 臧月进, 周新耀, 等. 基于支撑向量机算法的抗干扰混合波束成形系统[J]. 强激光与粒子束, 2021, 33: 123020. doi: 10.11884/HPLPB202133.210235
Xu Lei, Zang Yuejin, Zhou Xinyao, et al. An anti-jamming hybrid beamforming system designed based on support vector machine algorithm[J]. High Power Laser and Particle Beams, 2021, 33: 123020. doi: 10.11884/HPLPB202133.210235
Citation: Xu Lei, Zang Yuejin, Zhou Xinyao, et al. An anti-jamming hybrid beamforming system designed based on support vector machine algorithm[J]. High Power Laser and Particle Beams, 2021, 33: 123020. doi: 10.11884/HPLPB202133.210235

基于支撑向量机算法的抗干扰混合波束成形系统

doi: 10.11884/HPLPB202133.210235
详细信息
    作者简介:

    徐 磊,742426820@qq.com

  • 中图分类号: O451

An anti-jamming hybrid beamforming system designed based on support vector machine algorithm

  • 摘要: 针对复杂电磁环境下毫米波阵列的空间辐射干扰抑制问题,设计了一种低成本的自适应波束成形系统。首先建立了复杂电磁环境下通信系统模型,建立目标函数。然后利用机器学习中支持向量机算法将原非凸约束问题转化为二阶锥优化问题,获得理想编码矢量。最后利用梯度追踪算法对理想波束矢量进行稀疏重构,完成抗干扰波束的低复杂度实现。仿真结果表明,提出的波束成形系统能够对干扰作出有效抑制,能提升通信质量。
  • 图  1  混合波束成形结构框图

    Figure  1.  Structure of hybrid beamforming system

    图  2  多链路通信网络

    Figure  2.  Communication network of muti-link

    图  3  干扰链路数为2时,SINR与发射功率关系

    Figure  3.  SINR vs total transmitted power, the number of interference is 2

    图  4  干扰链路数为6时,SINR与发射功率关系

    Figure  4.  SINR vs total transmitted power, the number of interference is 6

    图  5  运算时间与迭代次数关系

    Figure  5.  Running time vs number of iteration

    图  6  运算时间与阵列数目关系

    Figure  6.  Running time vs number of antennas

    表  1  基于GP的波束成形算法

    Table  1.   GP Algorithm

    input $ {{\boldsymbol{w}}_i} $,$ {N_{{\text{RF}}}} $,${ { {{\boldsymbol{A}}} }_Q}$
    ① ${ { { {\boldsymbol{F} } } }_{ {\text{RF} }(i)} } = \left[ { \cdot } \right];$
    ② $ {{\boldsymbol{F}}_{{\text{res}}(i)}} = {{\boldsymbol{w}}_i}; $
    ③ for $ j \leqslant {N_{{\text{RF}}}} $ do
    ④ ${ { {\boldsymbol{ \varPsi } } } } = { {\boldsymbol{A} } } _Q^*{ {\boldsymbol{F} }_{ {\text{res} }(i)} }$
    ⑤ $k = \arg \max {(\boldsymbol{\varPsi} {\boldsymbol{\varPsi} ^*})_{l,l} },l = 1,\cdots ,{N_{ {A_Q} } }$
    ⑥ ${ {\boldsymbol{F} }_{ {\text{RF} }(i)} } = \left[ { { {\boldsymbol{F} }_{ {\text{RF} }(i)} }\left| { { {\boldsymbol{A} }_Q}(:,k)} \right.} \right];$
    ⑦ ${\boldsymbol{d} } = {{{\boldsymbol{F}}} _{ {\text{RF(} }i{\text{)} } }^{\text{H} }{ {\boldsymbol{F} }_{ {\text{res(} }i{\text{)} } } }ext{)} }$
    ⑧ $g = \dfrac{ { {\boldsymbol{F} }_{ {\text{res(} }i{\text{)} } }^{\text{H} }{ {\boldsymbol{F} }_{ {\text{RF} }(i)} }{\boldsymbol{d} } } }{ {\left\| { { {\boldsymbol{F} }_{ {\text{RF} }(i)} }{\boldsymbol{d} } } \right\|_{{F} }^2} }$
    ⑨ ${ {\boldsymbol{v} }_{ {\text{BB} }(i)} } = \left[ { { {\boldsymbol{v} }_{ {\text{BB} }(i)} }\left| 0 \right.} \right] + g*{\boldsymbol{d} }$
    ⑩ ${ {\boldsymbol{F} }_{ {\text{res} }(i)} } = { {\boldsymbol{F} }_{ {\text{res} }(i)} } - g{ {\boldsymbol{F} }_{ {\text{RF} }(i)} }{\boldsymbol{d} }$
    ⑪ end for
    ⑫ ${ {\boldsymbol{v} }_{ {\text{BB} }(i)} } = {P_i}\dfrac{ { { {\boldsymbol{v} }_{ {\text{BB} }(i)} } } }{ { { {\left\| { { {\boldsymbol{F} }_{ {\text{RF} }(i)} }{ {\boldsymbol{v} }_{ {\text{BB} }(i)} } } \right\|}_{{F} } } }}$
    end
    下载: 导出CSV
  • [1] 陈川, 顾村锋. 基于分布式的隐蔽式探测技术研究[J]. 空天防御, 2018, 1(4):48-51. (Chen Chuan, Gu Cunfeng. Concealed detection research based on distributed techniques[J]. Air & Space Defense, 2018, 1(4): 48-51 doi: 10.3969/j.issn.2096-4641.2018.04.008
    [2] Sapaty P S. Mosaic warfare: from philosophy to model to solution[J]. Mathematical Machines and Systems, 2019(3): 17-34.
    [3] 李强, 王飞跃. 马赛克战概念分析和未来陆战场网信体系及其智能对抗研究[J]. 指挥与控制学报, 2020, 6(2):87-93. (Li Qiang, Wang Feiyue. Conceptual analysis of mosaic warfare and systems of network-information systems for intelligent countermeasures and future land battles[J]. Journal of Command and Control, 2020, 6(2): 87-93 doi: 10.3969/j.issn.2096-0204.2020.02.0087
    [4] 孙佳琛, 王金龙, 陈瑾, 等. 群体智能协同通信: 愿景、模型和关键技术[J]. 中国科学:信息科学, 2020, 50(3):307-317. (Sun Jiachen, Wang Jinlong, Chen Jin, et al. Cooperative communication based on swarm intelligence: vision, model, and key technology[J]. Scientia Sinica Informationis, 2020, 50(3): 307-317 doi: 10.1360/SSI-2019-0186
    [5] Sahingoz O K. Mobile networking with UAVs: opportunities and challenges[C]//Proceedings of 2013 International Conference on Unmanned Aircraft Systems. Atlanta: IEEE, 2013: 933-941.
    [6] Alkhateeb A, Nam Y H, Rahman S, et al. Initial beam association in millimeter wave cellular systems: analysis and design insights[J]. IEEE Transactions on Wireless Communications, 2017, 16(5): 2807-2821. doi: 10.1109/TWC.2017.2666806
    [7] Sohrabi F, Yu Wei. Hybrid digital and analog beamforming design for large-scale antenna arrays[J]. IEEE Journal of Selected Topics in Signal Processing, 2016, 10(3): 501-513. doi: 10.1109/JSTSP.2016.2520912
    [8] Natarajan A, Reynolds S K, Tsai M D, et al. A fully-integrated 16-element phased-array receiver in SiGe BiCMOS for 60-GHz communications[J]. IEEE Journal of Solid-State Circuits, 2011, 46(5): 1059-1075. doi: 10.1109/JSSC.2011.2118110
    [9] Zou Weixia, Cui Zhifang, Li Bin, et al. Beamforming codebook design and performance evaluation for 60GHz wireless communication[C]//Proceedings of the 2011 11th International Symposium on Communications & Information Technologies. Hangzhou: IEEE, 2011: 30-35.
    [10] El Ayach O, Rajagopal S, Abu-Surra S, et al. Spatially sparse precoding in millimeter wave MIMO systems[J]. IEEE Transactions on Wireless Communications, 2014, 13(3): 1499-1513. doi: 10.1109/TWC.2014.011714.130846
    [11] Alkhateeb A, El Ayach O, Leus G, et al. Channel estimation and hybrid precoding for millimeter wave cellular systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 831-846. doi: 10.1109/JSTSP.2014.2334278
    [12] Bekmezci I, Sahingoz O K, Temel Ş. Flying ad-hoc networks (FANETs): a survey[J]. Ad Hoc Networks, 2013, 11(3): 1254-1270. doi: 10.1016/j.adhoc.2012.12.004
    [13] 司宾强, 周顺利, 由育阳, 等. 基于复支持向量机的鲁棒自适应波束合成算法[C]//第十三届全国信号和智能信息处理与应用学术会议论文集. 汉中: 中国高科技产业化研究会, 2019

    Si Binqiang, Zhou Shunli, You Yuyang, et al. Robust adaptive beamforming algorithm based on complex support vector machine[C]//National Conference on Signal and Intelligent Information Processing and Application. Hanzhong: China High Tech Industrialization Research Association, 2019
    [14] Hayssam D, Yu Wei. Coordinated beamforming for the multicell multi-antenna wireless system[J]. IEEE Transactions on Wireless Communications, 2010, 9(5): 1748-1759. doi: 10.1109/TWC.2010.05.090936
    [15] 徐磊, 周藜莎, 李仁俊, 等. 毫米波波束编码技术在无人机智能集群中的应用[J]. 航空学报, 2020, 41:723754. (Xu Lei, Zhou Lisha, Li Renjun, et al. Application of millimeter wave beam coding technology in UAV intelligent swarm[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41: 723754 doi: 10.7527/S1000-6893.2019.23754
    [16] Song J, Choi J, Love D J. Common codebook millimeter wave beam design: designing beams for both sounding and communication with uniform planar arrays[J]. IEEE Transactions on Communications, 2017, 65(4): 1859-1872. doi: 10.1109/TCOMM.2017.2665497
    [17] de Donno D, Palacios J, Widmer J. Millimeter-wave beam training acceleration through low-complexity hybrid transceivers[J]. IEEE Transactions on Wireless Communications, 2017, 16(6): 3646-3660. doi: 10.1109/TWC.2017.2686402
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  733
  • HTML全文浏览量:  373
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-11
  • 修回日期:  2021-11-06
  • 网络出版日期:  2021-11-16
  • 刊出日期:  2021-12-15

目录

    /

    返回文章
    返回