留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

针孔相机全场X射线荧光成像的模拟研究

何泽 黄宁 王鹏 陈子晗 彭博

何泽, 黄宁, 王鹏, 等. 针孔相机全场X射线荧光成像的模拟研究[J]. 强激光与粒子束, 2021, 33: 116001. doi: 10.11884/HPLPB202133.210299
引用本文: 何泽, 黄宁, 王鹏, 等. 针孔相机全场X射线荧光成像的模拟研究[J]. 强激光与粒子束, 2021, 33: 116001. doi: 10.11884/HPLPB202133.210299
He Ze, Huang Ning, Wang Peng, et al. Simulation study of full-field X-ray fluorescence imaging with a pinhole camera[J]. High Power Laser and Particle Beams, 2021, 33: 116001. doi: 10.11884/HPLPB202133.210299
Citation: He Ze, Huang Ning, Wang Peng, et al. Simulation study of full-field X-ray fluorescence imaging with a pinhole camera[J]. High Power Laser and Particle Beams, 2021, 33: 116001. doi: 10.11884/HPLPB202133.210299

针孔相机全场X射线荧光成像的模拟研究

doi: 10.11884/HPLPB202133.210299
基金项目: 四川省重大科技专项(2020ZDZX0004)
详细信息
    作者简介:

    何 泽,heze@stu.scu.edu.cn

    通讯作者:

    黄 宁,huang_ning@scu.edu.cn

  • 中图分类号: O657.34

Simulation study of full-field X-ray fluorescence imaging with a pinhole camera

  • 摘要: 为解决全场X射线荧光(XRF)成像中针孔形状和尺寸的选取问题,采用Geant4软件,模拟了6种不同类型针孔和4种不同的针孔孔径,分析了这些参数对点扩散函数和调制传递函数的影响;模拟了不同能量X射线荧光平面源的成像过程,并用均值滤波和Richardson迭代法对图像进行处理,分析了图像处理的效果。模拟结果表明:对于能量小于20 keV的荧光X射线,双锥孔结合直孔模型的点扩散函数尖锐性和等晕性更好,调制传递函数的截止频率更大,空间分辨更好,更适合做全场XRF成像的针孔;均值滤波结合Richardson迭代法的图像处理算法对全场XRF图像处理的效果较好。
  • 图  1  基于针孔的FF-XRF成像原理

    Figure  1.  The principle of FF-XRF imaging based on pinhole

    图  2  不同材料在1~30 keV范围内的平均自由程[13]

    Figure  2.  The mean free path of different materials in the range of 1-30 keV

    图  3  PSF的尖锐性和等晕性

    Figure  3.  Sharpness and isoplanatism of PSF

    图  4  六种不同的针孔结构

    Figure  4.  Six different pinhole mask structures

    图  5  孔径为50 μm, 100 μm, 200 μm和400 μm时不同孔型的PSF

    Figure  5.  PSF with different aperture types at the pinhole diameter of 50 μm, 100 μm, 200 μm and 400 μm

    图  6  孔径为50 μm, 100 μm, 200 μm和400 μm时不同孔型的MTF

    Figure  6.  MTF with different aperture types at the pinhole diameter of 50 μm, 100 μm, 200 μm and 400 μm

    图  7  条纹状荧光面源和不同能量的PSF

    Figure  7.  Images of the original plane source and the PSF of different energy

    图  8  四种特征X射线的能谱图

    Figure  8.  Energy spectra of four characteristic X-rays

    图  9  不同特征X射线组成的图案

    Figure  9.  The pattern composed of different characteristic X-rays

    图  10  图像处理后不同特征X射线组成的图案

    Figure  10.  Pattern composed of different characteristic X-rays after image processing

    表  1  孔径为50 μm, 100 μm, 200 μm和400 μm时不同孔型下PSF的尖锐性和等晕性

    Table  1.   Sharpness and isoplanatism of PSF with different pinhole mask structures at the pinhole diameter of 50 μm, 100 μm, 200 μm and 400 μm

    diameter/μmpinhole mask structuresleft sharpness/μmright sharpness/μmisoplanatism/μm
    50 (a) straight hole model 65 65 98
    (b) double cone hole model 65 65 64
    (c) double cone and straight hole model 52 52 64
    (d) right cone hole model 65 65 66
    (e) left cone hole model 65 65 66
    (f) penumbra hole model 52 52 66
    100 (a) straight hole model 65 65 200
    (b) double cone hole model 78 78 100
    (c) double cone and straight hole model 65 65 97
    (d) right cone hole model 78 78 99
    (e) left cone hole model 78 78 99
    (f) penumbra hole model 65 65 97
    200 (a) straight hole model 78 78 399
    (b) double cone hole model 78 78 205
    (c) double cone and straight hole model 65 65 198
    (d) right cone hole model 78 78 206
    (e) left cone hole model 78 78 205
    (f) penumbra hole model 65 65 198
    (a) straight hole model 78 78 800
    (b) double cone hole model 104 104 411
    400 (c) double cone and straight hole model 78 78 399
    (d) right cone hole model 104 104 411
    (e) left cone hole model 104 104 411
    (f) penumbra hole model 78 78 398
    下载: 导出CSV

    表  2  孔径为50 μm, 100 μm, 200 μm和400 μm时不同孔型下MTF的截止频率

    Table  2.   Cut-off frequency (lp/mm) of MTF with different pinhole mask structures at the pinhole diameter of 50 μm, 100 μm, 200 μm and 400 μm

    pinhole mask structurediameter/μm
    50100200400
    (a) straight hole model 6.9 3.7 2.0 1.0
    (b) double cone hole model 10.0 6.7 3.6 1.9
    (c) double cone and straight hole model 10.1 6.9 3.7 2.0
    (d) right cone hole model 10.1 6.8 3.6 1.9
    (e) left cone hole model 10.1 6.8 3.6 1.9
    (f) penumbra hole model 10.2 6.9 3.7 2.0
    下载: 导出CSV

    表  3  图像处理的效果

    Table  3.   The performance of image processing

    energy/keVstatistical error/%original SNR/dBprocessed SNR/dBiterations
    6.4 1.2 18.7 26.2 2
    8.0 0.8 18.2 26.9 4
    9.8 0.7 20.2 27.2 4
    12.6 1.2 18.8 26.8 4
    下载: 导出CSV
  • [1] Vasin M G Ignatiev Yu V, Lakhtikov A E, et al. Energy-resolved X-ray imaging[J]. Spectrochimica Acta Part B, 2007, 62(6): 648-653.
    [2] Walter P, Sarrazin P, Gailhanou M, et al. Full-field XRF instrument for cultural heritage: Application to the study of a Caillebotte painting[J]. X-Ray Spectrometry, 2019, 48(4): 274-280. doi: 10.1002/xrs.2841
    [3] Kulow A, Buzanich A G, Reinholz U, et al. Comparison of three reconstruction methods based on deconvolution, iterative algorithm and neural network for X-ray fluorescence imaging with coded aperture optics[J]. J Anal At Spectrom, 2020, 35(7): 1423-1434. doi: 10.1039/D0JA00146E
    [4] Tsunemi H, Wada M, Hayashida K, et al. X-ray color movie using the charge-coupled device with a direct X-ray detection method[J]. J Appl Phys, 1991, 30(12A): 3540-3544.
    [5] Alfeld M, Janssens K, Sasov A, et al. The use of full-field XRF for simultaneous elemental mapping[C]//Proceedings of AIP Conference. 2010, 1221(1): 111-118.
    [6] Romano F P, Altana C, Cosentino L, et al. A new X-ray pinhole camera for energy dispersive X-ray fluorescence imaging with high-energy and high-spatial resolution[J]. Spectrochimica Acta Part B, 2013, 86(1): 60-65.
    [7] Romano F P, Caliri C, Cosentino L, et al. Macro and micro full field X-ray fluorescence with an X-ray pinhole camera presenting high energy and high spatial resolution[J]. Anal Chem, 2014, 86(21): 10892-10899. doi: 10.1021/ac503263h
    [8] Romano F P, Caliri C, Cosentino L, et al. Micro X-ray fluorescence imaging in a tabletop full field-X-ray fluorescence instrument and in a full field-particle induced X-ray emission end station[J]. Anal Chem, 2016, 88(20): 9873-9880. doi: 10.1021/acs.analchem.6b02811
    [9] Zhao W, Sakurai K. CCD camera as feasible large-area-size X-ray detector for X-ray fluorescence spectroscopy and imaging[J]. Rev Sci Instrum, 2017, 88: 063703. doi: 10.1063/1.4985149
    [10] Chantler C T, Olsen K, Dragoset R A, et al. X-ray form factor, attenuation, and scattering tables[OL]. [2021-11-8].https://www.nist.gov/pml/x-ray-form-factor-attenuation-and-scattering-tables.
    [11] 姚志明, 段保军, 马继明, 等. 大孔径厚针孔数值模拟研究[J]. 原子能科学技术, 2019, 53(2):379-384. (Yao Zhiming, Duan Baojun, Ma Jiming, et al. Numerical simulation of large thick aperture imaging[J]. Atomic Energy Science and Technology, 2019, 53(2): 379-384 doi: 10.7538/yzk.2018.youxian.0294
    [12] 余波, 应阳君, 许海波. 中子半影成像的散射中子对点扩散函数的影响[J]. 强激光与粒子束, 2010, 22(11):2714-2718. (Yu Bo, Ying Yangjun, Xu Haibo. Effect of scattered netrons on point spread function in neutron penumbral imaging[J]. High Power Laser and Particle Beams, 2010, 22(11): 2714-2718 doi: 10.3788/HPLPB20102211.2714
    [13] 霍雷, 刘剑利, 马永和. 辐射剂量与防护[M]. 北京: 电子工业出版社, 2015: 98-100

    Huo Lei, Liu Jianli, Ma Yonghe. Radiation dose and protection[M]. Beijing: Publishing House of Electronics Industry, 2015: 98-100
    [14] Allison J, Amako K, Apostolakis J, et al. Geant4 developments and applications[J]. IEEE Transactions on Nuclear Science, 2006, 53(1): 270-278. doi: 10.1109/TNS.2006.869826
    [15] 段泽明, 刘俊, 姜其立, 等. 便携式微束X射线荧光谱仪的研发[J]. 原子能科学技术, 2018, 52(18):2243-2248. (Duan Zeming, Liu Jun, Jiang Qili, et al. Development of portable micro-X-ray fluorescence spectrometer[J]. Atomic Energy Science and Technology, 2018, 52(18): 2243-2248
    [16] Richardson W H. Bayesian-based iterative method of image restoration[J]. J Opt Soc Am, 1972, 62(1): 55-59. doi: 10.1364/JOSA.62.000055
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  722
  • HTML全文浏览量:  294
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 修回日期:  2021-10-28
  • 录用日期:  2021-11-08
  • 网络出版日期:  2021-11-11
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回