留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粒子束团状态对测量束流发射度及能量的影响

安超凡 谢修璀 蒲越虎

安超凡, 谢修璀, 蒲越虎. 粒子束团状态对测量束流发射度及能量的影响[J]. 强激光与粒子束, 2021, 33: 114001. doi: 10.11884/HPLPB202133.210302
引用本文: 安超凡, 谢修璀, 蒲越虎. 粒子束团状态对测量束流发射度及能量的影响[J]. 强激光与粒子束, 2021, 33: 114001. doi: 10.11884/HPLPB202133.210302
An Chaofan, Xie Xiucui, Pu Yuehu. Effects of bunch state on measurement of beam emittance and energy[J]. High Power Laser and Particle Beams, 2021, 33: 114001. doi: 10.11884/HPLPB202133.210302
Citation: An Chaofan, Xie Xiucui, Pu Yuehu. Effects of bunch state on measurement of beam emittance and energy[J]. High Power Laser and Particle Beams, 2021, 33: 114001. doi: 10.11884/HPLPB202133.210302

粒子束团状态对测量束流发射度及能量的影响

doi: 10.11884/HPLPB202133.210302
基金项目: 国家重点研发计划项目(2016YFC0105408)
详细信息
    作者简介:

    安超凡,anchaofan@sinap.ac.cn

    通讯作者:

    谢修璀,xiexiucui@sinap.ac.cn

  • 中图分类号: TL506

Effects of bunch state on measurement of beam emittance and energy

  • 摘要: 为了验证国产质子注入器的参数是否满足需求,注入器团队设计了束流测量系统用于测量国产质子直线注入器束流的流强、发射度、能量以及能散等关键指标。此测量系统包含了采用变聚焦法测量发散度、采用分析磁铁测量束流能量和能散的主要功能。利用束流输运线设计软件Tracewin(版本2.11.4.1)进行了系统束线的物理设计,对束测系统测量质子束流的发散度和能量的精度进行了模拟计算。由于经过RFQ-(APF)DTL加速后的粒子束团为“拖尾”的非理想粒子束团,需要针对非理想束团对束测系统测量发射度和能量产生的影响进行分析。通过对模拟计算结果的分析,发现相对于测量理想粒子束团的结果非理想粒子束团对束测系统测量发射度精度影响较大;非理想粒子束团对束测系统测量能量精度影响较小。
  • 图  1  束流能量测量系统的示意图

    Figure  1.  Schematic diagram of the beam energy measurement system

    图  2  束流测量系统设计结构框图

    Figure  2.  The beam measurement system design structure diagram

    图  3  模拟测量APF输出束流的结果图

    Figure  3.  The results of simulated measurement of the APF output beam

    图  4  第3块磁铁磁场梯度变化与荧光靶处$ {\sigma }_{B(11)} $的关系

    Figure  4.  Relationship between the magnetic field gradient of the third magnet and the position of the screen $ {\sigma }_{B(11)} $

    图  5  j0j和束团动能之间的关系

    Figure  5.  The relation between j0j and kinetic energy

    图  6  j0j$ {\sigma }_{{\rm{B}}X(11)} $的关系

    Figure  6.  The relation between j0j and $ {\sigma }_{{\rm{B}}X(11)} $

    图  7  Tracewin软件模拟法拉第杯得到流强分布结果

    Figure  7.  Tracewin simulated beam current distribution using the Faraday cup

    表  1  理想粒子束团和非理想粒子束团的初始参数

    Table  1.   Initial parameters of ideal and non-ideal bunch

    particle bunch${\alpha }_{x}$$\;{\beta }_{x}$/(mm/(π·mrad))${\alpha }_{y}$$\;{\beta }_{y}$/(mm/(π·mrad))${\alpha }_{{\textit{z}} }$$\;{\beta }_{{\textit{z}} }$/(mm/(π·mrad))xx′/(mm/(π·mrad))yy′/(mm/(π·mrad))${E}_{K}$/MeV
    ideal bunch 0.115 0.785 0.121 0.760 −1.861 2.781 0.314 0.315 6.98
    non-ideal bunch 0.020 0.640 0.027 0.617 −3.308 1.697 0.376 0.377 6.79
    下载: 导出CSV

    表  2  两种方式得到的入口处发射度的结果及其相对误差

    Table  2.   The results of the emittance at the entrance obtained by the two methods and their relative errors

    nameemittance of ideal bunch
    (normalized RMS)/($\mathrm{ {\text{π} } }\cdot\mathrm{m}\mathrm{m}\cdot\mathrm{m}\mathrm{r}\mathrm{a}\mathrm{d}$)
    emittance of non-ideal bunch
    (normalized RMS)/($\mathrm{ {\text{π} } }\cdot \mathrm{m}\mathrm{m}\cdot \mathrm{m}\mathrm{r}\mathrm{a}\mathrm{d}$)
    directionxyxy
    emittance at entrance obtained by the least square method 0.302 0.302 0.821 0.433
    calculated input emittance of the software 0.288 0.302 0.376 0.377
    relative error/% 4.64 0 118.35 14.85
    下载: 导出CSV

    表  3  改变相位差后模拟测量发射度所得结果

    Table  3.   Simulated emittance measurement results after changing phase difference

    j0j/(°)initial beam emittance
    (normalized RMS)/($\mathrm{ {\text{π} } }\cdot\mathrm{m}\mathrm{m}\cdot\mathrm{m}\mathrm{r}\mathrm{a}\mathrm{d}$)
    fitting the emittance of beam
    (normalized RMS)/($\mathrm{ {\text{π} } }\cdot\mathrm{m}\mathrm{m}\cdot\mathrm{m}\mathrm{r}\mathrm{a}\mathrm{d}$)
    relative error/%
    directionxyxyxy
    1080 0.376 0.377 0.337 0.357 10.37 5.3
    1260 0.376 0.377 0.363 0.364 3.46 3.45
    1440 0.376 0.377 0.402 0.370 6.91 1.86
    1620 0.376 0.377 0.457 0.376 21.54 0.27
    1800 0.376 0.377 0.515 0.383 36.97 1.59
    2160 0.376 0.377 0.774 0.410 105.85 3.3
    2340 0.376 0.377 0.819 0.432 117.82 14.59
    下载: 导出CSV

    表  4  模拟分析磁铁法测量束流能量部分的结果

    Table  4.   Simulation results of beam energy measured by analyzing magnet

    particle bunchthe highest point where the current through
    slit2 deviates from point J/mm
    energy spread/
    MeV
    degree of energy
    spread/%
    relative error with
    standard energy /%
    ideal bunch−0.3750.074441.20.09
    non-ideal bunch−7.50.07961.151.77
    下载: 导出CSV
  • [1] Han Rongcheng, Li Yongjiang, Pu Yuehu. Collection efficiency of a monitor parallel plate ionization chamber for pencil beam scanning proton therapy[J]. Nuclear Science and Techniques, 2020, 31(13): 3-12.
    [2] Fang Shouxian, Guan Xialing, Tang Jingyu, et al. ATPF – a dedicated proton therapy facility[J]. Chinese Physics C, 2010, 34(3): 383-388. doi: 10.1088/1674-1137/34/3/015
    [3] 乔舰, 谢修璀, 李德明, 等. APTR 质子同步加速器 RFQ 直线注入器的优化设计[J]. 强激光与粒子束, 2020, 32::064004. (Qiao Jian, Xie Xiucui, Li Deming, et al. Optimized design of RFQ linear injector of APTR proton synchrotron[J]. High Power Laser and Particle Beams, 2020, 32:: 064004
    [4] 汤启升, 王志山, 李雪军. 上海质子治疗装置同步环真空布局及真空室设计[J]. 原子能科学技术, 2015, 49(S2):529-532. (Tang Qisheng, Wang Zhishan, Li Xuejun. Synchronous ring vacuum layout and vacuum chamber design of Shanghai proton therapy device[J]. Atomic Energy Science and Technology, 2015, 49(S2): 529-532
    [5] 段雪非, 张满洲, 李浩虎. 上海质子治疗装置束流输运系统物理设计[J]. 核技术, 2011, 34(5):381-385. (Duan Xuefei, Zhang Manzhou, Li Haohu. Physical design of beam transport system of Shanghai proton therapy device[J]. Nuclear Techniques, 2011, 34(5): 381-385
    [6] 姜培勇. APF IH-DTL注入器的研究与设计[D]. 兰州: 中国科学院近代物理研究所, 2015: 55-56

    Jiang Peiyong. Research and design of APF IH-DTL Injector [D]. Lanzhou: Institute of Modern Physics, Chinese Academy of Sciences, 2015: 55-56
    [7] Xie Xiucui, Pu Yuehu, Yang Fan, et al. Design of a 7-MeV APF DTL with robust considerations[J]. Nuclear Inst. and Methods in Physics Research A, 2018, 908: 49-59. doi: 10.1016/j.nima.2018.08.028
    [8] Kwon H J, Cho Y S, Kim H S, et al. Beam current and energy measurement of the PEFP 20MeV accelerator[J]. Researchgate, 2007, 56: 4129-4131.
    [9] Weng W T, Cheng I H, Smith GA, et al. The multiwire secondary emission monitor and the emittance measurement of the AGS beam[J]. IEEE Trans on Nucl Sci, 1983, 30(40): 2331-2333.
    [10] Aune B, Corveller P, Jablonka M, et al. A device for electron GUN emittance measurement[J]. IEEE Trans on Nucl Sci, 1985, 32(5): 1896-1898. doi: 10.1109/TNS.1985.4333759
    [11] 赵籍九, 尹兆升. 粒子加速器技术[M]. 北京: 高等教育出版, 2006: 365

    Zhao Jijiu, Yin Zhaosheng. Particle Accelerator Technology[M]. Beijing: Higher Education Press, 2006: 365
    [12] 邓建军, 何国荣, 丁伯南, 等. 强流脉冲电子束能谱测量技术研究[J]. 强激光与粒子束, 1993, 5(3):353-358. (Deng Jianjun, He Guorong, Ding Bonan, et al. Research on energy spectrum measurement technology of high current pulsed electron beam[J]. High Power Laser and Particle Beams, 1993, 5(3): 353-358
    [13] 冉朝晖. 兰州高能电子成像实验平台束流发射度测量及成像实验研究[D]. 兰州: 中国科学院近代物理研究所, 2020: 27

    Ran Zhaohui. Lanzhou high-energy electronic imaging experimental platform beam emittance measurement and imaging experimental research[D]. Lanzhou: Institute of Modern Physics, Chinese Academy of Sciences, 2020: 27
    [14] 杨国君, 李成刚, 张卓, 等. 用于 LIA 强流脉冲电子束能谱测量的磁分析器设计[J]. 信息与电子工程, 2010, 8(1):101-104. (Yang Guojun, Li Chenggang, Zhang Zhuo, et al. Design of magnetic analyzer for LIA high current pulsed electron beam energy spectrum measurement[J]. Information and Electronic Engineering, 2010, 8(1): 101-104 doi: 10.3969/j.issn.1672-2892.2010.01.024
    [15] 邓建军, 陈思富, 李劲, 等. 2 MeV注入器脉冲电子束时间分辨能谱诊断研究[J]. 强激光与粒子, 2003, 15(7):705-707. (Deng Jianjun, Chen Sifu, Li Jing, et al. 2 MeV injector pulsed electron beam time-resolved energy spectrum diagnosis research[J]. High Power Laser and Particle Beams, 2003, 15(7): 705-707
    [16] 陈佳洱. 加速器物理基础[M]. 北京: 北京大学出版社, 2016: 15

    Chen Jiaer. Accelerator physics foundation. Beijing: Peking University Press, 2016: 15
    [17] Yamamoto K, Tanaka H, Harada H. Experimental verification of an APF linac for a proton therapy facility[J]. Nuclear Instruments and Methods in Physics Research B, 2011, 269: 2875-2878. doi: 10.1016/j.nimb.2011.04.046
    [18] 赵红卫, 沈志清, 魏宝文. 梯度法对HIRFL束流发射度的测量[J]. 原子能科学技术, 1994, 28(1):50-55. (Zhao Hongwei, Shen Zhiqing, Wei Baowen. Measurement of HIRFL beam emittance by gradient method[J]. Atomic Energy Science and Technology, 1994, 28(1): 50-55
    [19] 许珊珊, 叶恺容, 陈永忠. SSRF直线加速器束流发射度测量[J]. 核技术, 2008, 31(3):174-177. (Xu Shanshan, Ye Kairong, Chen Yongzhong. Beam emittance measurement of SSRF linear accelerator[J]. Nuclear Techniques, 2008, 31(3): 174-177 doi: 10.3321/j.issn:0253-3219.2008.03.004
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  818
  • HTML全文浏览量:  392
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-20
  • 修回日期:  2021-10-20
  • 网络出版日期:  2021-11-01
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回