留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机分布反馈光纤激光器时-频-空域特性研究进展

范孟秋 林圣淘 吴函 郑万国 王子南

范孟秋, 林圣淘, 吴函, 等. 随机分布反馈光纤激光器时-频-空域特性研究进展[J]. 强激光与粒子束, 2021, 33: 111003. doi: 10.11884/HPLPB202133.210306
引用本文: 范孟秋, 林圣淘, 吴函, 等. 随机分布反馈光纤激光器时-频-空域特性研究进展[J]. 强激光与粒子束, 2021, 33: 111003. doi: 10.11884/HPLPB202133.210306
Fan Mengqiu, Lin Shengtao, Wu han, et al. Research progress of random fiber lasers’ characteristics in time-frequency-spatial domain[J]. High Power Laser and Particle Beams, 2021, 33: 111003. doi: 10.11884/HPLPB202133.210306
Citation: Fan Mengqiu, Lin Shengtao, Wu han, et al. Research progress of random fiber lasers’ characteristics in time-frequency-spatial domain[J]. High Power Laser and Particle Beams, 2021, 33: 111003. doi: 10.11884/HPLPB202133.210306

随机分布反馈光纤激光器时-频-空域特性研究进展

doi: 10.11884/HPLPB202133.210306
基金项目: 中国工程物理研究院激光聚变研究中心青年人才基金项目(RCFCZ3-2019-7);国家自然科学基金项目(61205048, 61290312, 61635005);国家万人计划青年拔尖人才项目(W030211001001);四川省杰出青年科技人才项目(2020JDJQ0024)
详细信息
    作者简介:

    范孟秋,fanmengqiu@163.com

    通讯作者:

    郑万国,wgzheng_caep@sina.com

    王子南,znwang@uestc.edu.cn

  • 中图分类号: TN24

Research progress of random fiber lasers’ characteristics in time-frequency-spatial domain

  • 摘要:

    较为系统地回顾了近年来学术界在随机分布反馈光纤激光器时-频-空域特性方面的研究进展,分析总结了随机分布反馈光纤激光器的时-频-空域动态特性影响因素,展望了随机分布反馈光纤激光器应用于高功率激光驱动装置的前景,并对未来潜在的研究方向进行了探讨。

  • 图  1  光纤随机激光概念示意图[5]

    Figure  1.  A concept of the random distributed feedback fiber laser[5]

    图  2  光纤随机激光器不同结构[5]

    Figure  2.  Randomly distributed feedback fiber laser configurations[5]

    图  3  拉曼光纤随机激光器微分方程模型不同求解方法[14]

    Figure  3.  Methods for solving the systems of differential equations of the Raman random fiber laser[14]

    (a) traditional Euler method, (b) the method for solving UCM (ultrafast convergent power-balance model) used in “loop body one”

    图  4  基于NLSE模型的光纤随机激光器激射光谱特性[11]

    Figure  4.  Lasing spectral characteristics of randomly distributed feedback fiber laser based on NLSE[11]

    图  5  基于NLSE模型的光纤随机激光器输出时域和统计特性[11]

    Figure  5.  Temporal and statistical characteristics of randomly distributed feedback fiber laser based on NLSE[11]

    图  6  光纤随机激光器强度输出特性[35]

    Figure  6.  Output intensity characteristics of randomly distributed feedback fiber laser[35]

    图  7  光纤随机激光器时域和统计输出特性[36]

    Figure  7.  Output temporal characteristics and statistical features of random fiber laser[36]

    (a) and (b) typical temporal trace of the output random laser around threshold. (c) histograms (log scale) showing the distribution of optical intensity maxima for 105 trace events. The peak intensities are normalized by the corresponding SWH (defined as the mean height of the highest third of events) values. The vertical dashed lines indicate 2 × SWH and thus mark the limit for a pulse to be considered as an optical RW (Rogue Wave). (d) evolution of consecutive traces around optical RW events at threshold. (e) pulse shapes of typical normal and optical RW events.

    图  8  不同波长滤波后光纤随机激光器的时域动态特性及概率密度分布[38]

    Figure  8.  Temporal intensity dynamics and PDF of filtered random lasing radiations at different spectral locations[38]

    图  9  最大泵浦功率时输出随机激光的时域信号和相应的频谱密度[39]

    Figure  9.  Temporal signals and corresponding spectral densities of the RFL at maximal pump power[39]

    图  10  不同泵浦源情况下光纤随机激光器归一化时域曲线[40]

    Figure  10.  Normalized oscilloscope traces of the RRFL output by different pump[40]

    图  11  ASE泵浦线宽对光纤随机激光器的影响[42]

    Figure  11.  Effect of bandwidth of ASE pump on random fiber laser[42]

    图  12  1090 nm YRFL泵浦特性[43]

    Figure  12.  Characteristics of 1090 nm YRFL pump[43]

    图  13  1090 nm泵浦的四阶1365 nm光纤随机激光与1365 nm商用掺镱光纤激光器对比[43]

    Figure  13.  Comparison between 1365 nm RFL pumped by 1090 YRFL and commercial 1365 nm fiber laser[43]

    图  14  基于瑞利反馈的光纤随机激光器光谱演变过程[13]

    Figure  14.  Spectrum evolution of random fiber laser based on Rayleigh scattering[13]

    图  15  光纤随机激光器不同激射波长成分的时域动态特性((a),(b)中相同字母表示相同的激射谱线)[46]

    Figure  15.  Temporal dynamics of the generation spectra of the measured random fiber laser (the letters in (a) and (b) mark the same spectral lines)[46]

    图  16  光纤随机激光实时频域-时域动态演化[47]

    Figure  16.  Real-time spectro-temporal evolution in the random fiber laser[47]

    图  17  光谱相关性结果[47]

    Figure  17.  Spectral correlations in the random fiber laser[47]

    图  18  不同泵浦功率情况下随机激光输出强度谱和强度统计特性分析(掺铒光纤随机激光器)[49]

    Figure  18.  Statistical analysis of the intensity spectra and PDF P(I) of maximum intensities I with different pump power (erbium-doped RFL)[49]

    图  19  不同泵浦功率下的随机激光输出时域强度曲线及其相应的概率密度函数[52]

    Figure  19.  Statistical analysis of the temporal intensity and PDF P(I) of maximum intensities I with different pump power (Raman RFL)[52]

    图  20  不同照明光源的成像应用效果[57]

    Figure  20.  Optical images of the speckle pattern and the logo mask with different illumination sources[57]

    图  21  不同光源透过毛玻璃后散斑图[59]

    Figure  21.  Speckle formed after passing through a ground glass diffuser[59]

    (a) single mode RFL, (b) multimode RFL, (c) single mode ASE,  (d)multimode ASE, (e) single mode NLL, (f) multimode NLL

    图  22  基于 MOPA 的高功率低空间相干性光纤随机激光器实验装置示意图[60]

    Figure  22.  Schematic diagram of high power low spatial coherence random fiber laser based on MOPA configuration[60]

  • [1] Turitsyn S K, Babin S A, El-Taher A E, et al. Random distributed feedback fibre laser[J]. Nature Photonics, 2010, 4(4): 231-235. doi: 10.1038/nphoton.2010.4
    [2] Churkin D V, Sugavanam S, Vatnik I D, et al. Recent advances in fundamentals and applications of random fiber lasers[J]. Advances in Optics and Photonics, 2015, 7(3): 516-569. doi: 10.1364/AOP.7.000516
    [3] 胡朋兵, 董新永. 随机分布反馈光纤激光器研究进展[J]. 激光与光电子学进展, 2011, 48:110606. (Hu Pengbing, Dong Xinyong. Research progress in random distributed feedback fiber lasers[J]. Laser & Optoelectronics Progress, 2011, 48: 110606
    [4] 曹健华, 林圣淘, 王子南等. 超长距离光纤随机激光多点传感系统的设计与实现[J]. 光学学报, 2021, 41:1306006. (Jianhua Cao, Shengtao Lin, Zinan Wang, et al. Design and implementation for ultra-Long-distance multi-point sensing system based on random fiber laser[J]. Acta Optica Sinica, 2021, 41: 1306006 doi: 10.3788/AOS202141.1306006
    [5] Turitsyn S K, Babin S A, Churkin D V, et al. Random distributed feedback fibre lasers[J]. Physics Reports, 2014, 542(2): 133-193. doi: 10.1016/j.physrep.2014.02.011
    [6] Wu Han, Xiong Ji, Han Bing, et al. Ultra-high speed random bit generation based on Rayleigh feedback assisted ytterbium-doped random fiber laser[J]. Science China Technological Sciences, 2021, 64(6): 1295-1301. doi: 10.1007/s11431-020-1806-7
    [7] Lin Shengtao, Wang Zinan, Li Jiaqi, et al. Nonlinear dynamics of four-wave mixing, cascaded stimulated Raman scattering and self Q-switching in a common-cavity ytterbium/Raman random fiber laser[J]. Optics & Laser Technology, 2021, 134: 106613.
    [8] González I R R, Raposo E P, Macêdo A M. Coexistence of turbulence-like and glassy behaviours in a photonic system[J]. Scientific Report, 2018, 8: 17046. doi: 10.1038/s41598-018-35434-z
    [9] Wang Zinan, Wu Han, Fan Mengqiu, et al. High power random fiber laser with short cavity length: theoretical and experimental investigations[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21: 0900506.
    [10] Churkin D V, Babin S A, El-Taher A E, et al. Raman fiber lasers with a random distributed feedback based on Rayleigh scattering[J]. Physical Review A, 2010, 82: 033828. doi: 10.1103/PhysRevA.82.033828
    [11] Smirnov S V, Churkin D V. Modeling of spectral and statistical properties of a random distributed feedback fiber laser[J]. Optics Express, 2013, 21(18): 21236-21241. doi: 10.1364/OE.21.021236
    [12] Kolokolov I V, Lebedev V V, Podivilov E V, et al. Theory of a random fiber laser[J]. Journal of Experimental and Theoretical Physics, 2014, 119(6): 1134-1139. doi: 10.1134/S1063776114120061
    [13] Churkin D V, Kolokolov I V, Podivilov E V, et al. Wave kinetics of random fibre lasers[J]. Nature Communications, 2015, 6: 6214. doi: 10.1038/ncomms7214
    [14] Lin Shengtao, Wang Zinan, Araújo H A, et al. Ultrafast convergent power-balance model for Raman random fiber laser with half-open cavity[J]. Optics Express, 2020, 28(15): 22500-22510. doi: 10.1364/OE.398386
    [15] Du Xueyuan, Zhang Hanwei, Wang Xiaolin, et al. Tunable random distributed feedback fiber laser operating at 1μm[J]. Applied Optics, 2015, 54(4): 908-911. doi: 10.1364/AO.54.000908
    [16] Fan Mengqiu, Zong Zhaoyu, Tian Xiaocheng, et al. Comprehensive investigations on 1053 nm random distributed feedback fiber laser[J]. IEEE Photonics Journal, 2017, 9: 1501109.
    [17] Wu Han, Wang Zinan, Sun Wei, et al. 1.5μm low threshold, high efficiency random fiber laser with hybrid erbium-Raman gain[J]. Journal of Lightwave Technology, 2018, 36(4): 844-849. doi: 10.1109/JLT.2017.2712739
    [18] Wu Han, Wang Zinan, Fan Mengqiu, et al. Multiwavelength ytterbium-Brillouin random Rayleigh feedback fiber laser[J]. Laser Physics Letters, 2018, 15: 035105. doi: 10.1088/1612-202X/aa9f66
    [19] Wu Han, Wang Zinan, He Qiheng, et al. Common-cavity ytterbium/Raman random distributed feedback fiber laser[J]. Laser Physics Letters, 2017, 14: 065101. doi: 10.1088/1612-202X/aa6dbf
    [20] Agrawal G P. 非线性光纤光学[M]. 5版. 贾东方, 葛春风, 王肇颖, 等译. 北京: 电子工业出版社, 2014

    . (Agrawal G P. Nonlinear fiber optics[M]. Jia Dongfang, Ge Chunfeng, Wang Zhaoying, et al, trans. Beijing: Publishing House of Electronics Industry, 2014
    [21] Kuznetsov A G, Podivilov E V, Babin S A. Actively Q-switched Raman fiber laser[J]. Laser Physics Letters, 2015, 12: 035102. doi: 10.1088/1612-2011/12/3/035102
    [22] Bravo M, Fernandez-Vallejo M, Lopez-Amo M. Internal modulation of a random fiber laser[J]. Optics Letters, 2013, 38(9): 1542-1544. doi: 10.1364/OL.38.001542
    [23] Xu Jiangming, Ye Jun, Xiao Hu, et al. Narrow-linewidth Q-switched random distributed feedback fiber laser[J]. Optics Express, 2016, 24(17): 19203-19210. doi: 10.1364/OE.24.019203
    [24] Wu Han, Wang Zinan, He Qiheng, et al. Polarization-modulated random fiber laser[J]. Laser Physics Letters, 2016, 13: 055101. doi: 10.1088/1612-2011/13/5/055101
    [25] Wang Simin, Lin Wei, Chen Weicheng, et al. Low-threshold and multi-wavelength Q-switched random erbium-doped fiber laser[J]. Applied Physics Express, 2016, 9: 032701. doi: 10.7567/APEX.9.032701
    [26] Tang Yulong, Xu Jianqiu. A random Q-switched fiber laser[J]. Scientific Reports, 2015, 5: 9338. doi: 10.1038/srep09338
    [27] Zeng Xiaopei, Zhang Weili, Ma Rui, et al. Regulation of a pulsed random fiber laser in the Q-switched regime[J]. Laser Physics Letters, 2016, 13: 115105. doi: 10.1088/1612-2011/13/11/115105
    [28] Xu Jiangming, Ye Jun, Liu Wei, et al. Passively spatiotemporal gain-modulation-induced stable pulsing operation of a random fiber laser[J]. Photonics Research, 2017, 5(6): 598-603. doi: 10.1364/PRJ.5.000598
    [29] Yao Baicheng, Rao Yunjiang Wang Zinan, et al. Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers[J]. Scientific Reports, 2015, 5: 18526.
    [30] 叶俊. 高功率随机光纤激光及其光谱调控[D]. 长沙: 国防科学技术大学, 2018

    Ye Jun. High power random fiber laser and its spectral manipulation property[D]. Changsha: National University of Defense Technology, 2018
    [31] 吴函. 新型随机光纤激光器的实现及应用[D]. 成都: 电子科技大学, 2019

    Wu Han. Research on the realization of novel random fiber laser and its applications[D]. Chengdu: University of Electronic Science and Technology of China, 2019
    [32] Churkin D V, Smirnov S V, Podivilov E V. Statistical properties of partially coherent cw fiber lasers[J]. Optics Letters, 2010, 35(19): 3288-3290. doi: 10.1364/OL.35.003288
    [33] Gorbunov O A, Sugavanam S, Vatnik I D, et al. Statistical properties of radiation of multiwavelength random DFB fiber laser[J]. Optics Express, 2016, 24(17): 19417-19423. doi: 10.1364/OE.24.019417
    [34] Hammani K, Finot C, Dudley J M, et al. Optical rogue-wave-like extreme value fluctuations in fiber Raman amplifiers[J]. Optics Express, 2008, 16(21): 16467-16474. doi: 10.1364/OE.16.016467
    [35] Gorbunov O A, Sugavanam S, Churkin D V. Intensity dynamics and statistical properties of random distributed feedback fiber laser[J]. Optics Letters, 2015, 40(8): 1783-1786. doi: 10.1364/OL.40.001783
    [36] Xu Jiangming, Wu Jian, Ye Jun, et al. Optical rogue wave in random fiber laser[J]. Photonics Research, 2020, 8: 01000001.
    [37] Gorbunov O A, Sugavanam S, Vatnik I D, et al. Poisson distribution of extreme events in radiation of random distributed feedback fiber laser[J]. Optics Letters, 2020, 45(8): 2375-2378. doi: 10.1364/OL.390492
    [38] Wu Han, Han Bing, Wang Zinan, et al. Statistical properties of Er/Yb co-doped random Rayleigh feedback fiber laser[J]. Chinese Optics Letters, 2020, 19: 021402.
    [39] Xu Jiangming, Lou Zhaokai, Ye Jun, et al. Incoherently pumped high-power linearly-polarized single-mode random fiber laser: experimental investigations and theoretical prospects[J]. Optics Express, 2017, 25(5): 5609-5617. doi: 10.1364/OE.25.005609
    [40] Dong Jinyan, Zhang Lei, Jiang Huawei, et al. High order cascaded Raman random fiber laser with high spectral purity[J]. Optics Express, 2018, 26(5): 5275-5280. doi: 10.1364/OE.26.005275
    [41] Ye Jun, Xu Jiangming, Song Jiaxin, et al. Pump scheme optimization of an incoherently pumped high-power random fiber laser[J]. Photonics Research, 2019, 7(9): 977-983. doi: 10.1364/PRJ.7.000977
    [42] Zhang Yang, Song Jiaxin, Ye Jun, et al. Tunable random Raman fiber laser at 1.7 µm region with high spectral purity[J]. Optics Express, 2019, 27(20): 28800-28807. doi: 10.1364/OE.27.028800
    [43] Han Bing, Rao Yunjiang, Wu Han, et al. Low-noise high-order Raman fiber laser pumped by random lasing[J]. Optics Letters, 2020, 45(20): 5804-5807. doi: 10.1364/OL.405899
    [44] Andreasen J, Cao Hui. Numerical study of amplified spontaneous emission and lasing in random media[J]. Physical Review A, 2010, 82: 063835. doi: 10.1103/PhysRevA.82.063835
    [45] Cao Hui. Lasing in random media[J]. Waves in Random Media, 2003, 13(3): R1-R39. doi: 10.1088/0959-7174/13/3/201
    [46] Bliokh Y, Chaikina E I, Vatnik I D, et al. Temporal variation of the spectrum of a continuously pumped random fiber laser: phenomenological model[J]. Journal of the Optical Society of America B, 2019, 36(2): 408-414. doi: 10.1364/JOSAB.36.000408
    [47] Sugavanam S, Sorokina M, Churkin D V. Spectral correlations in a random distributed feedback fibre laser[J]. Nature Communications, 2017, 8: 15514. doi: 10.1038/ncomms15514
    [48] Samorodnitsky G, Taqqu M S. Stable non-Gaussian random processes[M]. New York: Chapman and Hall, 1994.
    [49] Lima B C, Gomes A S L, Pincheira P I R, et al. Observation of Lévy statistics in one-dimensional erbium-based random fiber laser[J]. Journal of the Optical Society of America B, 2017, 34(2): 293-299. doi: 10.1364/JOSAB.34.000293
    [50] Roa Gonzalez I R, Lima B C, Pincheira P I R, et al. Turbulence hierarchy in a random fibre laser[J]. Nature Communications, 2017, 8: 15731. doi: 10.1038/ncomms15731
    [51] Lima B C, Pincheira P I R, Raposo E P, et al. Extreme-value statistics of intensities in a cw-pumped random fiber laser[J]. Physical Review A, 2017, 96: 013834. doi: 10.1103/PhysRevA.96.013834
    [52] Li Jiaqi, Wu Han, Wang Zinan, et al. Lévy spectral intensity statistics in a Raman random fiber laser[J]. Optics Letters, 2019, 44(11): 2799-2802. doi: 10.1364/OL.44.002799
    [53] Mehta D S, Naik D N, Singh R K, et al. Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity[J]. Applied Optics, 2012, 51(12): 1894-1904. doi: 10.1364/AO.51.001894
    [54] Wang Fei, Liu Xianlong, Yuan Yangsheng, et al. Experimental generation of partially coherent beams with different complex degrees of coherence[J]. Optics Letters, 2013, 38(11): 1814-1816. doi: 10.1364/OL.38.001814
    [55] 郑万国, 李平, 张锐, 等. 高功率激光装置光束精密调控性能研究进展[J]. 强激光与粒子束, 2020, 32:011003. (Zheng Wanguo, Li Ping, Zhang Rui, et al. Progress on laser precise control for high power laser facility[J]. High Power Laser and Particle Beams, 2020, 32: 011003 doi: 10.11884/HPLPB202032.190469
    [56] 马瑞. 光纤随机激光模式调控与应用研究[D]. 成都: 电子科技大学, 2019

    Ma Rui. Research on mode modulation of random fiber laser and its applications[D]. Chengdu: University of Electronic Science and Technology of China, 2019
    [57] He Jijun, Chan W K E, Cheng Xin, et al. Experimental and theoretical investigation of the polymer optical fiber random laser with resonant feedback[J]. Advanced Optical Materials, 2018, 6: 1701187. doi: 10.1002/adom.201701187
    [58] Redding B, Choma M A, Cao Hui. Speckle-free laser imaging using random laser illumination[J]. Nature Photonics, 2012, 6(6): 355-359. doi: 10.1038/nphoton.2012.90
    [59] Ma Rui, Rao Yunjiang, Zhang Weili, et al. Multimode random fiber laser for speckle-free imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25: 0900106.
    [60] Ma Rui, Li Jiaqi, Guo Jiayu, et al. High-power low spatial coherence random fiber laser[J]. Optics Express, 2019, 27(6): 8738-8744. doi: 10.1364/OE.27.008738
    [61] Ma Rui, Zhang Weili, Guo Jiayu, et al. Decoherence of fiber supercontinuum light source for speckle-free imaging[J]. Optics Express, 2018, 26(20): 26758-26765. doi: 10.1364/OE.26.026758
  • 加载中
图(22)
计量
  • 文章访问数:  1201
  • HTML全文浏览量:  481
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-23
  • 修回日期:  2021-11-03
  • 网络出版日期:  2021-11-17
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回