留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于维纳滤波的同轴电缆脉冲信号传输畸变补偿研究

陈广森 秦风 高原

陈广森, 秦风, 高原. 基于维纳滤波的同轴电缆脉冲信号传输畸变补偿研究[J]. 强激光与粒子束, 2021, 33: 123025. doi: 10.11884/HPLPB202133.210310
引用本文: 陈广森, 秦风, 高原. 基于维纳滤波的同轴电缆脉冲信号传输畸变补偿研究[J]. 强激光与粒子束, 2021, 33: 123025. doi: 10.11884/HPLPB202133.210310
Chen Guangsen, Qin Feng, Gao Yuan. Signal compensation of coaxial cable based on Wiener filtering method[J]. High Power Laser and Particle Beams, 2021, 33: 123025. doi: 10.11884/HPLPB202133.210310
Citation: Chen Guangsen, Qin Feng, Gao Yuan. Signal compensation of coaxial cable based on Wiener filtering method[J]. High Power Laser and Particle Beams, 2021, 33: 123025. doi: 10.11884/HPLPB202133.210310

基于维纳滤波的同轴电缆脉冲信号传输畸变补偿研究

doi: 10.11884/HPLPB202133.210310
基金项目: 快速扶持项目(80909010302)
详细信息
    作者简介:

    陈广森, 15528013771@163.com

    通讯作者:

    秦 风,fq_soul2000@163.com

    高 原,18142550916@163.com

  • 中图分类号: TM835

Signal compensation of coaxial cable based on Wiener filtering method

  • 摘要: 由于同轴电缆的低通传输特性,脉冲信号在同轴电缆中传输时不可避免地会出现畸变,并且畸变程度会随着脉冲信号频率、带宽以及传输距离的增加而增大。创新性地将图像处理领域中的一种图像复原方法——维纳滤波法应用于脉冲信号同轴电缆传输畸变补偿,仅利用同轴电缆的S参数和输出信号即可完成输入信号的重构。并以10 m同轴电缆为对象,采用该方法分别对双指数脉冲信号、高斯调制脉冲信号、调制方波信号进行传输畸变补偿。结果表明:对于不同样式的信号,该方法均具有优异的补偿性能;并且,与工程上常用的衰减补偿法相比,该方法不仅补偿精度高,还具有高的计算效率,在同轴电缆脉冲信号传输畸变补偿中具有很好的实用价值。
  • 图  1  维纳滤波法原理框图

    Figure  1.  Schematic diagram of Wiener filtering method

    图  2  维纳滤波法算法流程图

    Figure  2.  Solution flow of Wiener filtering method

    图  3  同轴电缆信号传输畸变补偿实验示意图

    Figure  3.  Schematic illustrating the experimental setup for signal compensation in coaxial cable

    图  4  10 m同轴电缆的S21参数

    Figure  4.  S21 parameter of 10 mcoaxial cable

    图  5  维纳滤波法对高斯调制脉冲信号的补偿

    Figure  5.  Compensation of a Gaussian modulated pulse signal by using Wiener filtering method

    图  6  维纳滤波法对另外两种类型信号的补偿

    Figure  6.  Compensation of other two types of signals using Wiener filtering method

    图  7  维纳滤波法与衰减补偿法对不同信号的对比补偿效果对比

    Figure  7.  Comparisons between the input signals and compensated signals using Wiener filtering method as well as attenuation compensation method for different types of signals

    表  1  同轴电缆输出信号、补偿信号与输入信号之间的相对误差

    Table  1.   Relative error (RE) between the input signal (IS) and output signal (OS) as well as compensated signals (CS) using Wiener filtering method

    RE between IS and OS/%RE between IS and CS/%
    double exponential pulse signal14.003.30
    Gaussian modulated pulse signal21.624.85
    modulated square wave signal33.905.01
    下载: 导出CSV

    表  2  两种补偿法得到的补偿信号与输入信号的相对偏差

    Table  2.   Relative error (RE) between the input signals and compensated signals using Wiener filtering method (WF) and attenuation compensation method (AC)

    RE using AC/%RE using WF/%
    double exponential pulse signal8.483.30
    Gaussian modulated pulse signal9.274.85
    modulated square wave signal10.645.01
    下载: 导出CSV

    表  3  衰减补偿法与维纳滤波法的计算效率对比

    Table  3.   Comparisons of the efficiency for different types of signals using Wiener filtering method and attenuation compensation method

    time of WF/stime of AC/s
    double exponential pulse signal0.840.77
    Gaussian modulated pulse signal0.890.78
    modulated square wave signal0.900.83
    下载: 导出CSV
  • [1] 陈克难, 刘文红. 信号波形在同轴电缆中的传输[J]. 仪器仪表学报, 2004, 25(s1):502-505, 515. (Chen Kenan, Liu Wenhong. Transmission of signal wave through coaxial-cable[J]. Chinese Journal of Scientific Instrument, 2004, 25(s1): 502-505, 515
    [2] 王亚平, 蔡勖. ALICE实验中同轴电缆的信号传输特性的研究[J]. 核电子学与探测技术, 2006, 26(2):195-198. (Wang Yaping, Cai Xu. Study of signal transmission properties of a coaxial cable in ALICE experiment[J]. Nuclear Electronics & Detection Technology, 2006, 26(2): 195-198 doi: 10.3969/j.issn.0258-0934.2006.02.019
    [3] 戴宇峰, 鲁军勇, 张晓, 等. 脉冲功率同轴电缆瞬态阻抗特性研究[J]. 高电压技术, 2019, 45(6):1915-1920. (Dai Yufeng, Lu Junyong, Zhang Xiao, et al. Research on transient impedance characteristic of coaxial cable for pulse power[J]. High Voltage Engineering, 2019, 45(6): 1915-1920
    [4] Landecker T L. A coaxial cable delay system for a synthesis radio telescope[J]. IEEE Transactions on Instrumentation and Measurement, 1984, 33(2): 78-83. doi: 10.1109/TIM.1984.4315166
    [5] 黄豹. 新的高频同轴电缆补偿原理[J]. 核电子学与探测技术, 1985(4):193-198. (Huang Bao. New principle of high frequency coaxial cable equalization[J]. Nuclear Electronics & Detection Technology, 1985(4): 193-198
    [6] 李宪优, 田耕, 于丽娟, 等. 强光一号加速器测量电缆补偿技术[J]. 强激光与粒子束, 2009, 21(3):473-476. (Li Xianyou, Tian Geng, Yu Lijuan, et al. Bandwidth compensation technology of QG-I accelerator's cables[J]. High Power Laser and Particle Beams, 2009, 21(3): 473-476
    [7] 付佳斌, 卿燕玲, 卫兵, 等. 同轴电缆测量纳秒脉冲信号衰减的数字补偿[J]. 强激光与粒子束, 2011, 23(10):2826-2830. (Fu Jiabin, Qing Yanling, Wei Bing, et al. Numerical compensation for coaxial cable signal degradation[J]. High Power Laser and Particle Beams, 2011, 23(10): 2826-2830
    [8] 渠红光, 李宪优, 田耕, 等. 基于衰减特性的电缆传输畸变软件补偿[J]. 装备指挥技术学院学报, 2010, 21(2):87-90. (Qu Hongguang, Li Xianyou, Tian Geng, et al. Attenuation compensation by software based on the character of transfers of the cable[J]. Journal of the Academy of Equipment Command & Technology, 2010, 21(2): 87-90
    [9] 洪鹏飞, 杨磊, 付廷岩, 等. 基于盲目反卷积算法的核脉冲信号处理[J]. 核技术, 2012, 35(10):775-779. (Hong Pengfei, Yang Lei, Fu Tingyan, et al. Nuclear pulse signal processing technique based on blind deconvolution method[J]. Nuclear Techniques, 2012, 35(10): 775-779
    [10] 王园, 朱江淼. 应用反卷积实现脉冲计量中的信号重构与系统辨识[J]. 信号处理, 2013, 29(4):532-535. (Wang Yuan, Zhu Jiangmiao. Signal reconstruction and system identification using the deconvolution in pulse metrology[J]. Signal Processing, 2013, 29(4): 532-535 doi: 10.3969/j.issn.1003-0530.2013.04.017
    [11] Sarkar T K, Tseng F I, Rao S M, et al. Deconvolution of impulse response from time-limited input and output: theory and experiment[J]. IEEE Transactions on Instrumentation and Measurement, 1985, IM-34(4): 541-546.
    [12] 秦风, 高原, 吴双. 基于改进贝叶斯非负Tikhonov正则化方法的同轴电缆信号传输畸变补偿研究[J]. 电子与信息学报, 2021, 43(8):2199-2206. (Qin Feng, Gao Yuan, Wu Shuang. Signal compensation of coaxial cable based on modified non-negative Tikhonov regularization method within Bayesian inference[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2199-2206 doi: 10.11999/JEIT210068
    [13] Gao Yuan, Jiang Yunsheng, Qin Feng, et al. Optimal choice of signal compensation in coaxial cable: modified non-negative Tikhonov regularization method within Bayesian frame[J]. Measurement, 2021, 174: 109072. doi: 10.1016/j.measurement.2021.109072
    [14] 杨艳美, 高满屯, 贺剑. 维纳滤波图像复原技术的研究与改进[J]. 科学技术与工程, 2012, 12(29):7611-7615. (Yang Yanmei, Gao Mantun, He Jian. Wiener filtering image restoration technology research and improvement[J]. Science Technology and Engineering, 2012, 12(29): 7611-7615 doi: 10.3969/j.issn.1671-1815.2012.29.024
    [15] Sekko E, Thomas G, Boukrouche A. A deconvolution technique using optimal wiener filtering and regularization[J]. Signal Processing, 1999, 72(1): 23-32. doi: 10.1016/S0165-1684(98)00161-3
    [16] Wang Yunsen, Mu Wenxiu, Cai Qi, et al. Remote sensing image restoration based on wiener filter and RBF neural network[C]//2018 Eighth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC). 2018: 500-504.
    [17] 范群贞. 运动模糊图像复原方法的研究[J]. 电子测量技术, 2013, 36(6):73-76. (Fan Qunzhen. Research on motion blurred image restoration method[J]. Electronic Measurement Technology, 2013, 36(6): 73-76 doi: 10.3969/j.issn.1002-7300.2013.06.018
    [18] Sankhe P D, Patil M, Margaret M. Deblurring of grayscale images using inverse and Wiener filter[C]//Proceedings of the International Conference & Workshop on Emerging Trends in Technology. 2011: 145-148.
    [19] 符成山. 一种改进谱减法语音增强算法的研究[J]. 信息通信, 2016(6):21-22. (Fu Chengshan. Research on an improved spectral subtraction speech enhancement algorithm[J]. Information & Communications, 2016(6): 21-22
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  742
  • HTML全文浏览量:  305
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-23
  • 修回日期:  2021-11-01
  • 网络出版日期:  2021-11-09
  • 刊出日期:  2021-12-15

目录

    /

    返回文章
    返回