留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于氟化铝基玻璃光纤的瓦级~3 μm激光

王鹏飞 刘墨 张集权 许念念 王顺宾

王鹏飞, 刘墨, 张集权, 等. 基于氟化铝基玻璃光纤的瓦级~3 μm激光[J]. 强激光与粒子束, 2021, 33: 111001. doi: 10.11884/HPLPB202133.210311
引用本文: 王鹏飞, 刘墨, 张集权, 等. 基于氟化铝基玻璃光纤的瓦级~3 μm激光[J]. 强激光与粒子束, 2021, 33: 111001. doi: 10.11884/HPLPB202133.210311
Wang Pengfei, Liu Mo, Zhang Jiquan, et al. Watt-level ~3 μm laser in AlF3-based glass fiber[J]. High Power Laser and Particle Beams, 2021, 33: 111001. doi: 10.11884/HPLPB202133.210311
Citation: Wang Pengfei, Liu Mo, Zhang Jiquan, et al. Watt-level ~3 μm laser in AlF3-based glass fiber[J]. High Power Laser and Particle Beams, 2021, 33: 111001. doi: 10.11884/HPLPB202133.210311

基于氟化铝基玻璃光纤的瓦级~3 μm激光

doi: 10.11884/HPLPB202133.210311
基金项目: 国家自然科学基金项目(61935006, 62090062, 62005060, 61905048);国家重点研发计划项目(2020YFA0607602);中央高校基础科研业务经费项目(3072021CF2514);深圳市基础研究项目(JCYJ20190808173619062);哈尔滨工程大学111引智项目(B13015)
详细信息
    作者简介:

    王鹏飞,pengfei.wang@tudublin.ie

    通讯作者:

    王顺宾,shunbinwang@hrbeu.edu.cn

  • 中图分类号: TN248

Watt-level ~3 μm laser in AlF3-based glass fiber

  • 摘要:

    研究了基于Ho3+/Pr3+共掺AlF3基玻璃单包层光纤的瓦级~3 μm激光。采用单模1150 nm光纤激光器泵浦上述增益光纤,得到了波长2.87 μm的激光输出,其最大输出功率为1.02 W,激光斜率效率为10.7%,输出激光的光束质量因子M2≈1.2。研究结果表明,AlF3基玻璃光纤是一种潜在的可获得高功率中红外激光输出的增益介质。

  • 图  1  Ho3+和Pr3+的能级图及和~3 µm发光相关的跃迁

    Figure  1.  Partial energy level diagrams of Ho3+ and Pr3+ and corresponding transitions related to ~3 µm laser

    图  2  Ho3+/Pr3+共掺AlF3基光纤吸收光谱

    Figure  2.  Absorption spectrum of Ho3+/Pr3+ co-doped AlF3-based fiber

    图  3  实验装置示意图

    Figure  3.  Schematic of the experimental set-up

    图  4  波长约2.87 μm激光输出和1150 nm 泵浦光功率依赖性曲线

    Figure  4.  Laser output power at λ≈2. 87 μm as a function of absorbed pump power at λ≈1.15 μm

    图  5  输出功率稳定性测试结果

    Figure  5.  Temporal dependence of output power over a period of 45 min. The inset shows the experimental set-up

  • [1] Zhu Xiushan, Jain R. Watt-level 100-nm tunable 3- μm fiber laser[J]. IEEE Photonics Technol Lett, 2008, 20(2): 156-158. doi: 10.1109/LPT.2007.912495
    [2] Wei Chen, Zhu Xiushan, Wang F, et al. Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser[J]. Opt Lett, 2013, 38(17): 3233-3236. doi: 10.1364/OL.38.003233
    [3] Tsang Y H, El-Taher A E. Efficient lasing at near 3 μm by a Dy-doped ZBLAN fiber laser pumped at ~ 1.1 μm by an Yb fiber laser[J]. Laser Phys Lett, 2011, 8(11): 818-822. doi: 10.1002/lapl.201110068
    [4] Sumiyoshi T, Sekita H, Arai T, et al. High-power continuous-wave 3- and 2-μm cascade Ho3+: ZBLAN fiber laser and its medical applications[J]. IEEE J Sel Top Quantum Electron, 1999, 5(4): 936-943. doi: 10.1109/2944.796314
    [5] Pollnan M. The route toward a diode-pumped 1-W erbium 3-μm fiber laser[J]. IEEE J Quantum Electron, 1997, 33(11): 1982-1990. doi: 10.1109/3.641313
    [6] Li Jianfeng, Luo Hongyu, Wang Lele, et al. Tunable Fe2+: ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm[J]. Opt Express, 2015, 23(17): 22362-22370. doi: 10.1364/OE.23.022362
    [7] Li Jianfeng, Hudson D D, Jackson S D. High-power diode-pumped fiber laser operating at 3 μm[J]. Opt Lett, 2011, 36(18): 3642-3644. doi: 10.1364/OL.36.003642
    [8] Jackson S D, King T A, Pollnau M. Diode-pumped 1.7-W erbium 3-μm fiber laser[J]. Opt Lett, 1999, 24(16): 1133-1135. doi: 10.1364/OL.24.001133
    [9] Hudson D D, Williams R J, Withford M J, et al. Single-frequency fiber laser operating at 2.9 μm[J]. Opt Lett, 2013, 38(14): 2388-2390. doi: 10.1364/OL.38.002388
    [10] Frischat G H, Hueber B, Ramdohr B. Chemical stability of ZrF4- and AlF3-based heavy metal fluoride glasses in water[J]. J Non-Cryst Solids, 2001, 284(1/3): 105-109.
    [11] Wang Yuhu, Sawanobori N, Nagahama S. Formation of fluoride glasses based on AlF3—YF3—PbF2 system[J]. J Non-Cryst Solids, 1991, 128(3): 322-325. doi: 10.1016/0022-3093(91)90469-M
    [12] Majewski M R, Woodward R I, Jackson S D. Dysprosium-doped ZBLAN fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm[J]. Opt Lett, 2018, 43(5): 971-974. doi: 10.1364/OL.43.000971
    [13] Aydin Y O, Fortin V, Vallée R, et al. Towards power scaling of 2.8 μm fiber lasers[J]. Opt Lett, 2018, 43(18): 4542-4545. doi: 10.1364/OL.43.004542
    [14] Crawford S, Hudson D D, Jackson S D. High-power broadly tunable 3 μm fiber laser for the measurement of optical fiber loss[J]. IEEE Photonics J, 2015, 7: 1502309.
    [15] Jia S J, Jia Z X, Yao C F, et al. Ho3+ doped fluoroaluminate glass fibers for 2.9 μm lasing[J]. Laser Phys, 2018, 28: 015802. doi: 10.1088/1555-6611/aa962e
    [16] Wang Shunbin, Zhang Jiquan, Xu Niannian, et al. 2.9 μm lasing from a Ho3+/Pr3+ co-doped AlF3-based glass fiber pumped by a 1150 nm laser[J]. Opt Lett, 2020, 45(5): 1216-1219. doi: 10.1364/OL.384216
  • 加载中
图(5)
计量
  • 文章访问数:  861
  • HTML全文浏览量:  294
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-23
  • 修回日期:  2021-11-10
  • 网络出版日期:  2021-11-19
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回